MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isomin Structured version   Visualization version   Unicode version

Theorem isomin 6587
Description: Isomorphisms preserve minimal elements. Note that  ( `' R " { D } ) is Takeuti and Zaring's idiom for the initial segment  { x  |  x R D }. Proposition 6.31(1) of [TakeutiZaring] p. 33. (Contributed by NM, 19-Apr-2004.)
Assertion
Ref Expression
isomin  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  C_  A  /\  D  e.  A ) )  -> 
( ( C  i^i  ( `' R " { D } ) )  =  (/) 
<->  ( ( H " C )  i^i  ( `' S " { ( H `  D ) } ) )  =  (/) ) )

Proof of Theorem isomin
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neq0 3930 . . . 4  |-  ( -.  ( ( H " C )  i^i  ( `' S " { ( H `  D ) } ) )  =  (/) 
<->  E. y  y  e.  ( ( H " C )  i^i  ( `' S " { ( H `  D ) } ) ) )
2 ssel 3597 . . . . . . . . . . . . . 14  |-  ( C 
C_  A  ->  (
x  e.  C  ->  x  e.  A )
)
3 isof1o 6573 . . . . . . . . . . . . . . 15  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-onto-> B
)
4 f1ofn 6138 . . . . . . . . . . . . . . 15  |-  ( H : A -1-1-onto-> B  ->  H  Fn  A )
5 fnbrfvb 6236 . . . . . . . . . . . . . . . 16  |-  ( ( H  Fn  A  /\  x  e.  A )  ->  ( ( H `  x )  =  y  <-> 
x H y ) )
65ex 450 . . . . . . . . . . . . . . 15  |-  ( H  Fn  A  ->  (
x  e.  A  -> 
( ( H `  x )  =  y  <-> 
x H y ) ) )
73, 4, 63syl 18 . . . . . . . . . . . . . 14  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( x  e.  A  ->  ( ( H `  x )  =  y  <->  x H y ) ) )
82, 7syl9r 78 . . . . . . . . . . . . 13  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( C  C_  A  ->  ( x  e.  C  ->  ( ( H `  x )  =  y  <->  x H y ) ) ) )
98imp31 448 . . . . . . . . . . . 12  |-  ( ( ( H  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  x  e.  C )  ->  (
( H `  x
)  =  y  <->  x H
y ) )
109rexbidva 3049 . . . . . . . . . . 11  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  ->  ( E. x  e.  C  ( H `  x )  =  y  <->  E. x  e.  C  x H
y ) )
11 vex 3203 . . . . . . . . . . . 12  |-  y  e. 
_V
1211elima 5471 . . . . . . . . . . 11  |-  ( y  e.  ( H " C )  <->  E. x  e.  C  x H
y )
1310, 12syl6rbbr 279 . . . . . . . . . 10  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  ->  (
y  e.  ( H
" C )  <->  E. x  e.  C  ( H `  x )  =  y ) )
14 fvex 6201 . . . . . . . . . . 11  |-  ( H `
 D )  e. 
_V
1511eliniseg 5494 . . . . . . . . . . 11  |-  ( ( H `  D )  e.  _V  ->  (
y  e.  ( `' S " { ( H `  D ) } )  <->  y S
( H `  D
) ) )
1614, 15mp1i 13 . . . . . . . . . 10  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  ->  (
y  e.  ( `' S " { ( H `  D ) } )  <->  y S
( H `  D
) ) )
1713, 16anbi12d 747 . . . . . . . . 9  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  ->  (
( y  e.  ( H " C )  /\  y  e.  ( `' S " { ( H `  D ) } ) )  <->  ( E. x  e.  C  ( H `  x )  =  y  /\  y S ( H `  D ) ) ) )
18 elin 3796 . . . . . . . . 9  |-  ( y  e.  ( ( H
" C )  i^i  ( `' S " { ( H `  D ) } ) )  <->  ( y  e.  ( H " C
)  /\  y  e.  ( `' S " { ( H `  D ) } ) ) )
19 r19.41v 3089 . . . . . . . . 9  |-  ( E. x  e.  C  ( ( H `  x
)  =  y  /\  y S ( H `  D ) )  <->  ( E. x  e.  C  ( H `  x )  =  y  /\  y S ( H `  D ) ) )
2017, 18, 193bitr4g 303 . . . . . . . 8  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  ->  (
y  e.  ( ( H " C )  i^i  ( `' S " { ( H `  D ) } ) )  <->  E. x  e.  C  ( ( H `  x )  =  y  /\  y S ( H `  D ) ) ) )
2120adantrr 753 . . . . . . 7  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  C_  A  /\  D  e.  A ) )  -> 
( y  e.  ( ( H " C
)  i^i  ( `' S " { ( H `
 D ) } ) )  <->  E. x  e.  C  ( ( H `  x )  =  y  /\  y S ( H `  D ) ) ) )
22 breq1 4656 . . . . . . . . . . . . . 14  |-  ( ( H `  x )  =  y  ->  (
( H `  x
) S ( H `
 D )  <->  y S
( H `  D
) ) )
2322biimpar 502 . . . . . . . . . . . . 13  |-  ( ( ( H `  x
)  =  y  /\  y S ( H `  D ) )  -> 
( H `  x
) S ( H `
 D ) )
24 vex 3203 . . . . . . . . . . . . . . . 16  |-  x  e. 
_V
2524eliniseg 5494 . . . . . . . . . . . . . . 15  |-  ( D  e.  A  ->  (
x  e.  ( `' R " { D } )  <->  x R D ) )
2625ad2antll 765 . . . . . . . . . . . . . 14  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
x  e.  A  /\  D  e.  A )
)  ->  ( x  e.  ( `' R " { D } )  <->  x R D ) )
27 isorel 6576 . . . . . . . . . . . . . 14  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
x  e.  A  /\  D  e.  A )
)  ->  ( x R D  <->  ( H `  x ) S ( H `  D ) ) )
2826, 27bitrd 268 . . . . . . . . . . . . 13  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
x  e.  A  /\  D  e.  A )
)  ->  ( x  e.  ( `' R " { D } )  <->  ( H `  x ) S ( H `  D ) ) )
2923, 28syl5ibr 236 . . . . . . . . . . . 12  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
x  e.  A  /\  D  e.  A )
)  ->  ( (
( H `  x
)  =  y  /\  y S ( H `  D ) )  ->  x  e.  ( `' R " { D }
) ) )
3029exp32 631 . . . . . . . . . . 11  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( x  e.  A  ->  ( D  e.  A  ->  ( ( ( H `  x
)  =  y  /\  y S ( H `  D ) )  ->  x  e.  ( `' R " { D }
) ) ) ) )
312, 30syl9r 78 . . . . . . . . . 10  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( C  C_  A  ->  ( x  e.  C  ->  ( D  e.  A  ->  ( ( ( H `  x
)  =  y  /\  y S ( H `  D ) )  ->  x  e.  ( `' R " { D }
) ) ) ) ) )
3231com34 91 . . . . . . . . 9  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( C  C_  A  ->  ( D  e.  A  ->  ( x  e.  C  ->  ( ( ( H `  x
)  =  y  /\  y S ( H `  D ) )  ->  x  e.  ( `' R " { D }
) ) ) ) ) )
3332imp32 449 . . . . . . . 8  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  C_  A  /\  D  e.  A ) )  -> 
( x  e.  C  ->  ( ( ( H `
 x )  =  y  /\  y S ( H `  D
) )  ->  x  e.  ( `' R " { D } ) ) ) )
3433reximdvai 3015 . . . . . . 7  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  C_  A  /\  D  e.  A ) )  -> 
( E. x  e.  C  ( ( H `
 x )  =  y  /\  y S ( H `  D
) )  ->  E. x  e.  C  x  e.  ( `' R " { D } ) ) )
3521, 34sylbid 230 . . . . . 6  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  C_  A  /\  D  e.  A ) )  -> 
( y  e.  ( ( H " C
)  i^i  ( `' S " { ( H `
 D ) } ) )  ->  E. x  e.  C  x  e.  ( `' R " { D } ) ) )
36 elin 3796 . . . . . . . 8  |-  ( x  e.  ( C  i^i  ( `' R " { D } ) )  <->  ( x  e.  C  /\  x  e.  ( `' R " { D } ) ) )
3736exbii 1774 . . . . . . 7  |-  ( E. x  x  e.  ( C  i^i  ( `' R " { D } ) )  <->  E. x
( x  e.  C  /\  x  e.  ( `' R " { D } ) ) )
38 neq0 3930 . . . . . . 7  |-  ( -.  ( C  i^i  ( `' R " { D } ) )  =  (/) 
<->  E. x  x  e.  ( C  i^i  ( `' R " { D } ) ) )
39 df-rex 2918 . . . . . . 7  |-  ( E. x  e.  C  x  e.  ( `' R " { D } )  <->  E. x ( x  e.  C  /\  x  e.  ( `' R " { D } ) ) )
4037, 38, 393bitr4i 292 . . . . . 6  |-  ( -.  ( C  i^i  ( `' R " { D } ) )  =  (/) 
<->  E. x  e.  C  x  e.  ( `' R " { D }
) )
4135, 40syl6ibr 242 . . . . 5  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  C_  A  /\  D  e.  A ) )  -> 
( y  e.  ( ( H " C
)  i^i  ( `' S " { ( H `
 D ) } ) )  ->  -.  ( C  i^i  ( `' R " { D } ) )  =  (/) ) )
4241exlimdv 1861 . . . 4  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  C_  A  /\  D  e.  A ) )  -> 
( E. y  y  e.  ( ( H
" C )  i^i  ( `' S " { ( H `  D ) } ) )  ->  -.  ( C  i^i  ( `' R " { D } ) )  =  (/) ) )
431, 42syl5bi 232 . . 3  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  C_  A  /\  D  e.  A ) )  -> 
( -.  ( ( H " C )  i^i  ( `' S " { ( H `  D ) } ) )  =  (/)  ->  -.  ( C  i^i  ( `' R " { D } ) )  =  (/) ) )
4443con4d 114 . 2  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  C_  A  /\  D  e.  A ) )  -> 
( ( C  i^i  ( `' R " { D } ) )  =  (/)  ->  ( ( H
" C )  i^i  ( `' S " { ( H `  D ) } ) )  =  (/) ) )
453, 4syl 17 . . . . . . . . 9  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H  Fn  A
)
46 fnfvima 6496 . . . . . . . . . . 11  |-  ( ( H  Fn  A  /\  C  C_  A  /\  x  e.  C )  ->  ( H `  x )  e.  ( H " C
) )
47463expia 1267 . . . . . . . . . 10  |-  ( ( H  Fn  A  /\  C  C_  A )  -> 
( x  e.  C  ->  ( H `  x
)  e.  ( H
" C ) ) )
4847adantrr 753 . . . . . . . . 9  |-  ( ( H  Fn  A  /\  ( C  C_  A  /\  D  e.  A )
)  ->  ( x  e.  C  ->  ( H `
 x )  e.  ( H " C
) ) )
4945, 48sylan 488 . . . . . . . 8  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  C_  A  /\  D  e.  A ) )  -> 
( x  e.  C  ->  ( H `  x
)  e.  ( H
" C ) ) )
5049adantrd 484 . . . . . . 7  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  C_  A  /\  D  e.  A ) )  -> 
( ( x  e.  C  /\  x  e.  ( `' R " { D } ) )  ->  ( H `  x )  e.  ( H " C ) ) )
5127biimpd 219 . . . . . . . . . . . . . 14  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
x  e.  A  /\  D  e.  A )
)  ->  ( x R D  ->  ( H `
 x ) S ( H `  D
) ) )
52 fvex 6201 . . . . . . . . . . . . . . . 16  |-  ( H `
 x )  e. 
_V
5352eliniseg 5494 . . . . . . . . . . . . . . 15  |-  ( ( H `  D )  e.  _V  ->  (
( H `  x
)  e.  ( `' S " { ( H `  D ) } )  <->  ( H `  x ) S ( H `  D ) ) )
5414, 53ax-mp 5 . . . . . . . . . . . . . 14  |-  ( ( H `  x )  e.  ( `' S " { ( H `  D ) } )  <-> 
( H `  x
) S ( H `
 D ) )
5551, 54syl6ibr 242 . . . . . . . . . . . . 13  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
x  e.  A  /\  D  e.  A )
)  ->  ( x R D  ->  ( H `
 x )  e.  ( `' S " { ( H `  D ) } ) ) )
5626, 55sylbid 230 . . . . . . . . . . . 12  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
x  e.  A  /\  D  e.  A )
)  ->  ( x  e.  ( `' R " { D } )  -> 
( H `  x
)  e.  ( `' S " { ( H `  D ) } ) ) )
5756exp32 631 . . . . . . . . . . 11  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( x  e.  A  ->  ( D  e.  A  ->  ( x  e.  ( `' R " { D } )  ->  ( H `  x )  e.  ( `' S " { ( H `  D ) } ) ) ) ) )
582, 57syl9r 78 . . . . . . . . . 10  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( C  C_  A  ->  ( x  e.  C  ->  ( D  e.  A  ->  ( x  e.  ( `' R " { D } )  ->  ( H `  x )  e.  ( `' S " { ( H `  D ) } ) ) ) ) ) )
5958com34 91 . . . . . . . . 9  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( C  C_  A  ->  ( D  e.  A  ->  ( x  e.  C  ->  ( x  e.  ( `' R " { D } )  ->  ( H `  x )  e.  ( `' S " { ( H `  D ) } ) ) ) ) ) )
6059imp32 449 . . . . . . . 8  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  C_  A  /\  D  e.  A ) )  -> 
( x  e.  C  ->  ( x  e.  ( `' R " { D } )  ->  ( H `  x )  e.  ( `' S " { ( H `  D ) } ) ) ) )
6160impd 447 . . . . . . 7  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  C_  A  /\  D  e.  A ) )  -> 
( ( x  e.  C  /\  x  e.  ( `' R " { D } ) )  ->  ( H `  x )  e.  ( `' S " { ( H `  D ) } ) ) )
6250, 61jcad 555 . . . . . 6  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  C_  A  /\  D  e.  A ) )  -> 
( ( x  e.  C  /\  x  e.  ( `' R " { D } ) )  ->  ( ( H `
 x )  e.  ( H " C
)  /\  ( H `  x )  e.  ( `' S " { ( H `  D ) } ) ) ) )
63 elin 3796 . . . . . 6  |-  ( ( H `  x )  e.  ( ( H
" C )  i^i  ( `' S " { ( H `  D ) } ) )  <->  ( ( H `
 x )  e.  ( H " C
)  /\  ( H `  x )  e.  ( `' S " { ( H `  D ) } ) ) )
6462, 36, 633imtr4g 285 . . . . 5  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  C_  A  /\  D  e.  A ) )  -> 
( x  e.  ( C  i^i  ( `' R " { D } ) )  -> 
( H `  x
)  e.  ( ( H " C )  i^i  ( `' S " { ( H `  D ) } ) ) ) )
65 n0i 3920 . . . . 5  |-  ( ( H `  x )  e.  ( ( H
" C )  i^i  ( `' S " { ( H `  D ) } ) )  ->  -.  (
( H " C
)  i^i  ( `' S " { ( H `
 D ) } ) )  =  (/) )
6664, 65syl6 35 . . . 4  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  C_  A  /\  D  e.  A ) )  -> 
( x  e.  ( C  i^i  ( `' R " { D } ) )  ->  -.  ( ( H " C )  i^i  ( `' S " { ( H `  D ) } ) )  =  (/) ) )
6766exlimdv 1861 . . 3  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  C_  A  /\  D  e.  A ) )  -> 
( E. x  x  e.  ( C  i^i  ( `' R " { D } ) )  ->  -.  ( ( H " C )  i^i  ( `' S " { ( H `  D ) } ) )  =  (/) ) )
6838, 67syl5bi 232 . 2  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  C_  A  /\  D  e.  A ) )  -> 
( -.  ( C  i^i  ( `' R " { D } ) )  =  (/)  ->  -.  ( ( H " C )  i^i  ( `' S " { ( H `  D ) } ) )  =  (/) ) )
6944, 68impcon4bid 217 1  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  C_  A  /\  D  e.  A ) )  -> 
( ( C  i^i  ( `' R " { D } ) )  =  (/) 
<->  ( ( H " C )  i^i  ( `' S " { ( H `  D ) } ) )  =  (/) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   class class class wbr 4653   `'ccnv 5113   "cima 5117    Fn wfn 5883   -1-1-onto->wf1o 5887   ` cfv 5888    Isom wiso 5889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-f1o 5895  df-fv 5896  df-isom 5897
This theorem is referenced by:  isofrlem  6590
  Copyright terms: Public domain W3C validator