MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isotr Structured version   Visualization version   Unicode version

Theorem isotr 6586
Description: Composition (transitive) law for isomorphism. Proposition 6.30(3) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
isotr  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  G  Isom  S ,  T  ( B ,  C ) )  ->  ( G  o.  H )  Isom  R ,  T  ( A ,  C ) )

Proof of Theorem isotr
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . 4  |-  ( ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  (
z S w  <->  ( G `  z ) T ( G `  w ) ) )  ->  G : B -1-1-onto-> C )
2 simpl 473 . . . 4  |-  ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  (
x R y  <->  ( H `  x ) S ( H `  y ) ) )  ->  H : A -1-1-onto-> B )
3 f1oco 6159 . . . 4  |-  ( ( G : B -1-1-onto-> C  /\  H : A -1-1-onto-> B )  ->  ( G  o.  H ) : A -1-1-onto-> C )
41, 2, 3syl2anr 495 . . 3  |-  ( ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <->  ( G `  z ) T ( G `  w ) ) ) )  -> 
( G  o.  H
) : A -1-1-onto-> C )
5 f1of 6137 . . . . . . . . . . . 12  |-  ( H : A -1-1-onto-> B  ->  H : A
--> B )
65ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  H : A
--> B )
7 simprl 794 . . . . . . . . . . 11  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  x  e.  A )
86, 7ffvelrnd 6360 . . . . . . . . . 10  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( H `  x )  e.  B
)
9 simprr 796 . . . . . . . . . . 11  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  y  e.  A )
106, 9ffvelrnd 6360 . . . . . . . . . 10  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( H `  y )  e.  B
)
11 simplrr 801 . . . . . . . . . 10  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  A. z  e.  B  A. w  e.  B  ( z S w  <->  ( G `  z ) T ( G `  w ) ) )
12 breq1 4656 . . . . . . . . . . . 12  |-  ( z  =  ( H `  x )  ->  (
z S w  <->  ( H `  x ) S w ) )
13 fveq2 6191 . . . . . . . . . . . . 13  |-  ( z  =  ( H `  x )  ->  ( G `  z )  =  ( G `  ( H `  x ) ) )
1413breq1d 4663 . . . . . . . . . . . 12  |-  ( z  =  ( H `  x )  ->  (
( G `  z
) T ( G `
 w )  <->  ( G `  ( H `  x
) ) T ( G `  w ) ) )
1512, 14bibi12d 335 . . . . . . . . . . 11  |-  ( z  =  ( H `  x )  ->  (
( z S w  <-> 
( G `  z
) T ( G `
 w ) )  <-> 
( ( H `  x ) S w  <-> 
( G `  ( H `  x )
) T ( G `
 w ) ) ) )
16 breq2 4657 . . . . . . . . . . . 12  |-  ( w  =  ( H `  y )  ->  (
( H `  x
) S w  <->  ( H `  x ) S ( H `  y ) ) )
17 fveq2 6191 . . . . . . . . . . . . 13  |-  ( w  =  ( H `  y )  ->  ( G `  w )  =  ( G `  ( H `  y ) ) )
1817breq2d 4665 . . . . . . . . . . . 12  |-  ( w  =  ( H `  y )  ->  (
( G `  ( H `  x )
) T ( G `
 w )  <->  ( G `  ( H `  x
) ) T ( G `  ( H `
 y ) ) ) )
1916, 18bibi12d 335 . . . . . . . . . . 11  |-  ( w  =  ( H `  y )  ->  (
( ( H `  x ) S w  <-> 
( G `  ( H `  x )
) T ( G `
 w ) )  <-> 
( ( H `  x ) S ( H `  y )  <-> 
( G `  ( H `  x )
) T ( G `
 ( H `  y ) ) ) ) )
2015, 19rspc2va 3323 . . . . . . . . . 10  |-  ( ( ( ( H `  x )  e.  B  /\  ( H `  y
)  e.  B )  /\  A. z  e.  B  A. w  e.  B  ( z S w  <->  ( G `  z ) T ( G `  w ) ) )  ->  (
( H `  x
) S ( H `
 y )  <->  ( G `  ( H `  x
) ) T ( G `  ( H `
 y ) ) ) )
218, 10, 11, 20syl21anc 1325 . . . . . . . . 9  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( ( H `  x ) S ( H `  y )  <->  ( G `  ( H `  x
) ) T ( G `  ( H `
 y ) ) ) )
22 fvco3 6275 . . . . . . . . . . 11  |-  ( ( H : A --> B  /\  x  e.  A )  ->  ( ( G  o.  H ) `  x
)  =  ( G `
 ( H `  x ) ) )
236, 7, 22syl2anc 693 . . . . . . . . . 10  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( ( G  o.  H ) `  x )  =  ( G `  ( H `
 x ) ) )
24 fvco3 6275 . . . . . . . . . . 11  |-  ( ( H : A --> B  /\  y  e.  A )  ->  ( ( G  o.  H ) `  y
)  =  ( G `
 ( H `  y ) ) )
256, 9, 24syl2anc 693 . . . . . . . . . 10  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( ( G  o.  H ) `  y )  =  ( G `  ( H `
 y ) ) )
2623, 25breq12d 4666 . . . . . . . . 9  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( (
( G  o.  H
) `  x ) T ( ( G  o.  H ) `  y )  <->  ( G `  ( H `  x
) ) T ( G `  ( H `
 y ) ) ) )
2721, 26bitr4d 271 . . . . . . . 8  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( ( H `  x ) S ( H `  y )  <->  ( ( G  o.  H ) `  x ) T ( ( G  o.  H
) `  y )
) )
2827bibi2d 332 . . . . . . 7  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( (
x R y  <->  ( H `  x ) S ( H `  y ) )  <->  ( x R y  <->  ( ( G  o.  H ) `  x ) T ( ( G  o.  H
) `  y )
) ) )
29282ralbidva 2988 . . . . . 6  |-  ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  (
z S w  <->  ( G `  z ) T ( G `  w ) ) ) )  -> 
( A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) )  <->  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( ( G  o.  H ) `  x
) T ( ( G  o.  H ) `
 y ) ) ) )
3029biimpd 219 . . . . 5  |-  ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  (
z S w  <->  ( G `  z ) T ( G `  w ) ) ) )  -> 
( A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) )  ->  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( ( G  o.  H ) `  x ) T ( ( G  o.  H
) `  y )
) ) )
3130impancom 456 . . . 4  |-  ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  (
x R y  <->  ( H `  x ) S ( H `  y ) ) )  ->  (
( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) )  ->  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( ( G  o.  H ) `  x ) T ( ( G  o.  H
) `  y )
) ) )
3231imp 445 . . 3  |-  ( ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <->  ( G `  z ) T ( G `  w ) ) ) )  ->  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( ( G  o.  H ) `  x
) T ( ( G  o.  H ) `
 y ) ) )
334, 32jca 554 . 2  |-  ( ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <->  ( G `  z ) T ( G `  w ) ) ) )  -> 
( ( G  o.  H ) : A -1-1-onto-> C  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( ( G  o.  H ) `  x
) T ( ( G  o.  H ) `
 y ) ) ) )
34 df-isom 5897 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
35 df-isom 5897 . . 3  |-  ( G 
Isom  S ,  T  ( B ,  C )  <-> 
( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )
3634, 35anbi12i 733 . 2  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  G  Isom  S ,  T  ( B ,  C ) )  <->  ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) ) )  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <->  ( G `  z ) T ( G `  w ) ) ) ) )
37 df-isom 5897 . 2  |-  ( ( G  o.  H ) 
Isom  R ,  T  ( A ,  C )  <-> 
( ( G  o.  H ) : A -1-1-onto-> C  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( ( G  o.  H ) `  x
) T ( ( G  o.  H ) `
 y ) ) ) )
3833, 36, 373imtr4i 281 1  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  G  Isom  S ,  T  ( B ,  C ) )  ->  ( G  o.  H )  Isom  R ,  T  ( A ,  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   class class class wbr 4653    o. ccom 5118   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888    Isom wiso 5889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897
This theorem is referenced by:  weisoeq  6605  oieu  8444  fz1isolem  13245  erdsze2lem2  31186  fzisoeu  39514
  Copyright terms: Public domain W3C validator