MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isosolem Structured version   Visualization version   Unicode version

Theorem isosolem 6597
Description: Lemma for isoso 6598. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Assertion
Ref Expression
isosolem  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( S  Or  B  ->  R  Or  A
) )

Proof of Theorem isosolem
Dummy variables  a 
b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isopolem 6595 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( S  Po  B  ->  R  Po  A
) )
2 isof1o 6573 . . . . . . . 8  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-onto-> B
)
3 f1of 6137 . . . . . . . 8  |-  ( H : A -1-1-onto-> B  ->  H : A
--> B )
4 ffvelrn 6357 . . . . . . . . . 10  |-  ( ( H : A --> B  /\  c  e.  A )  ->  ( H `  c
)  e.  B )
54ex 450 . . . . . . . . 9  |-  ( H : A --> B  -> 
( c  e.  A  ->  ( H `  c
)  e.  B ) )
6 ffvelrn 6357 . . . . . . . . . 10  |-  ( ( H : A --> B  /\  d  e.  A )  ->  ( H `  d
)  e.  B )
76ex 450 . . . . . . . . 9  |-  ( H : A --> B  -> 
( d  e.  A  ->  ( H `  d
)  e.  B ) )
85, 7anim12d 586 . . . . . . . 8  |-  ( H : A --> B  -> 
( ( c  e.  A  /\  d  e.  A )  ->  (
( H `  c
)  e.  B  /\  ( H `  d )  e.  B ) ) )
92, 3, 83syl 18 . . . . . . 7  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( ( c  e.  A  /\  d  e.  A )  ->  (
( H `  c
)  e.  B  /\  ( H `  d )  e.  B ) ) )
109imp 445 . . . . . 6  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
c  e.  A  /\  d  e.  A )
)  ->  ( ( H `  c )  e.  B  /\  ( H `  d )  e.  B ) )
11 breq1 4656 . . . . . . . 8  |-  ( a  =  ( H `  c )  ->  (
a S b  <->  ( H `  c ) S b ) )
12 eqeq1 2626 . . . . . . . 8  |-  ( a  =  ( H `  c )  ->  (
a  =  b  <->  ( H `  c )  =  b ) )
13 breq2 4657 . . . . . . . 8  |-  ( a  =  ( H `  c )  ->  (
b S a  <->  b S
( H `  c
) ) )
1411, 12, 133orbi123d 1398 . . . . . . 7  |-  ( a  =  ( H `  c )  ->  (
( a S b  \/  a  =  b  \/  b S a )  <->  ( ( H `
 c ) S b  \/  ( H `
 c )  =  b  \/  b S ( H `  c
) ) ) )
15 breq2 4657 . . . . . . . 8  |-  ( b  =  ( H `  d )  ->  (
( H `  c
) S b  <->  ( H `  c ) S ( H `  d ) ) )
16 eqeq2 2633 . . . . . . . 8  |-  ( b  =  ( H `  d )  ->  (
( H `  c
)  =  b  <->  ( H `  c )  =  ( H `  d ) ) )
17 breq1 4656 . . . . . . . 8  |-  ( b  =  ( H `  d )  ->  (
b S ( H `
 c )  <->  ( H `  d ) S ( H `  c ) ) )
1815, 16, 173orbi123d 1398 . . . . . . 7  |-  ( b  =  ( H `  d )  ->  (
( ( H `  c ) S b  \/  ( H `  c )  =  b  \/  b S ( H `  c ) )  <->  ( ( H `
 c ) S ( H `  d
)  \/  ( H `
 c )  =  ( H `  d
)  \/  ( H `
 d ) S ( H `  c
) ) ) )
1914, 18rspc2v 3322 . . . . . 6  |-  ( ( ( H `  c
)  e.  B  /\  ( H `  d )  e.  B )  -> 
( A. a  e.  B  A. b  e.  B  ( a S b  \/  a  =  b  \/  b S a )  ->  (
( H `  c
) S ( H `
 d )  \/  ( H `  c
)  =  ( H `
 d )  \/  ( H `  d
) S ( H `
 c ) ) ) )
2010, 19syl 17 . . . . 5  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
c  e.  A  /\  d  e.  A )
)  ->  ( A. a  e.  B  A. b  e.  B  (
a S b  \/  a  =  b  \/  b S a )  ->  ( ( H `
 c ) S ( H `  d
)  \/  ( H `
 c )  =  ( H `  d
)  \/  ( H `
 d ) S ( H `  c
) ) ) )
21 isorel 6576 . . . . . 6  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
c  e.  A  /\  d  e.  A )
)  ->  ( c R d  <->  ( H `  c ) S ( H `  d ) ) )
22 f1of1 6136 . . . . . . . . 9  |-  ( H : A -1-1-onto-> B  ->  H : A -1-1-> B )
232, 22syl 17 . . . . . . . 8  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-> B )
24 f1fveq 6519 . . . . . . . 8  |-  ( ( H : A -1-1-> B  /\  ( c  e.  A  /\  d  e.  A
) )  ->  (
( H `  c
)  =  ( H `
 d )  <->  c  =  d ) )
2523, 24sylan 488 . . . . . . 7  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
c  e.  A  /\  d  e.  A )
)  ->  ( ( H `  c )  =  ( H `  d )  <->  c  =  d ) )
2625bicomd 213 . . . . . 6  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
c  e.  A  /\  d  e.  A )
)  ->  ( c  =  d  <->  ( H `  c )  =  ( H `  d ) ) )
27 isorel 6576 . . . . . . 7  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
d  e.  A  /\  c  e.  A )
)  ->  ( d R c  <->  ( H `  d ) S ( H `  c ) ) )
2827ancom2s 844 . . . . . 6  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
c  e.  A  /\  d  e.  A )
)  ->  ( d R c  <->  ( H `  d ) S ( H `  c ) ) )
2921, 26, 283orbi123d 1398 . . . . 5  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
c  e.  A  /\  d  e.  A )
)  ->  ( (
c R d  \/  c  =  d  \/  d R c )  <-> 
( ( H `  c ) S ( H `  d )  \/  ( H `  c )  =  ( H `  d )  \/  ( H `  d ) S ( H `  c ) ) ) )
3020, 29sylibrd 249 . . . 4  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
c  e.  A  /\  d  e.  A )
)  ->  ( A. a  e.  B  A. b  e.  B  (
a S b  \/  a  =  b  \/  b S a )  ->  ( c R d  \/  c  =  d  \/  d R c ) ) )
3130ralrimdvva 2974 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( A. a  e.  B  A. b  e.  B  ( a S b  \/  a  =  b  \/  b S a )  ->  A. c  e.  A  A. d  e.  A  ( c R d  \/  c  =  d  \/  d R c ) ) )
321, 31anim12d 586 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( ( S  Po  B  /\  A. a  e.  B  A. b  e.  B  (
a S b  \/  a  =  b  \/  b S a ) )  ->  ( R  Po  A  /\  A. c  e.  A  A. d  e.  A  ( c R d  \/  c  =  d  \/  d R c ) ) ) )
33 df-so 5036 . 2  |-  ( S  Or  B  <->  ( S  Po  B  /\  A. a  e.  B  A. b  e.  B  ( a S b  \/  a  =  b  \/  b S a ) ) )
34 df-so 5036 . 2  |-  ( R  Or  A  <->  ( R  Po  A  /\  A. c  e.  A  A. d  e.  A  ( c R d  \/  c  =  d  \/  d R c ) ) )
3532, 33, 343imtr4g 285 1  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( S  Or  B  ->  R  Or  A
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    \/ w3o 1036    = wceq 1483    e. wcel 1990   A.wral 2912   class class class wbr 4653    Po wpo 5033    Or wor 5034   -->wf 5884   -1-1->wf1 5885   -1-1-onto->wf1o 5887   ` cfv 5888    Isom wiso 5889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-f1o 5895  df-fv 5896  df-isom 5897
This theorem is referenced by:  isoso  6598  isowe2  6600
  Copyright terms: Public domain W3C validator