MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isreg2 Structured version   Visualization version   Unicode version

Theorem isreg2 21181
Description: A topological space is regular if any closed set is separated from any point not in it by neighborhoods. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
isreg2  |-  ( J  e.  (TopOn `  X
)  ->  ( J  e.  Reg  <->  A. c  e.  (
Clsd `  J ) A. x  e.  X  ( -.  x  e.  c  ->  E. o  e.  J  E. p  e.  J  ( c  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) ) )
Distinct variable groups:    o, c, p, x, J    X, c,
o, p, x

Proof of Theorem isreg2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simp1r 1086 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  (
c  e.  ( Clsd `  J )  /\  x  e.  X )  /\  -.  x  e.  c )  ->  J  e.  Reg )
2 simp2l 1087 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  (
c  e.  ( Clsd `  J )  /\  x  e.  X )  /\  -.  x  e.  c )  ->  c  e.  ( Clsd `  J ) )
3 simp2r 1088 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  (
c  e.  ( Clsd `  J )  /\  x  e.  X )  /\  -.  x  e.  c )  ->  x  e.  X )
4 simp1l 1085 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  (
c  e.  ( Clsd `  J )  /\  x  e.  X )  /\  -.  x  e.  c )  ->  J  e.  (TopOn `  X ) )
5 toponuni 20719 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
64, 5syl 17 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  (
c  e.  ( Clsd `  J )  /\  x  e.  X )  /\  -.  x  e.  c )  ->  X  =  U. J
)
73, 6eleqtrd 2703 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  (
c  e.  ( Clsd `  J )  /\  x  e.  X )  /\  -.  x  e.  c )  ->  x  e.  U. J
)
8 simp3 1063 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  (
c  e.  ( Clsd `  J )  /\  x  e.  X )  /\  -.  x  e.  c )  ->  -.  x  e.  c )
9 eqid 2622 . . . . . 6  |-  U. J  =  U. J
109regsep2 21180 . . . . 5  |-  ( ( J  e.  Reg  /\  ( c  e.  (
Clsd `  J )  /\  x  e.  U. J  /\  -.  x  e.  c ) )  ->  E. o  e.  J  E. p  e.  J  ( c  C_  o  /\  x  e.  p  /\  ( o  i^i  p )  =  (/) ) )
111, 2, 7, 8, 10syl13anc 1328 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  (
c  e.  ( Clsd `  J )  /\  x  e.  X )  /\  -.  x  e.  c )  ->  E. o  e.  J  E. p  e.  J  ( c  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) )
12113expia 1267 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  (
c  e.  ( Clsd `  J )  /\  x  e.  X ) )  -> 
( -.  x  e.  c  ->  E. o  e.  J  E. p  e.  J  ( c  C_  o  /\  x  e.  p  /\  ( o  i^i  p )  =  (/) ) ) )
1312ralrimivva 2971 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  ->  A. c  e.  ( Clsd `  J
) A. x  e.  X  ( -.  x  e.  c  ->  E. o  e.  J  E. p  e.  J  ( c  C_  o  /\  x  e.  p  /\  ( o  i^i  p )  =  (/) ) ) )
14 topontop 20718 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
1514adantr 481 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A. c  e.  ( Clsd `  J ) A. x  e.  X  ( -.  x  e.  c  ->  E. o  e.  J  E. p  e.  J  (
c  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  J  e.  Top )
165adantr 481 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  y  e.  J )  ->  X  =  U. J )
1716difeq1d 3727 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  y  e.  J )  ->  ( X  \  y )  =  ( U. J  \ 
y ) )
189opncld 20837 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  y  e.  J )  ->  ( U. J  \ 
y )  e.  (
Clsd `  J )
)
1914, 18sylan 488 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  y  e.  J )  ->  ( U. J  \  y
)  e.  ( Clsd `  J ) )
2017, 19eqeltrd 2701 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  y  e.  J )  ->  ( X  \  y )  e.  ( Clsd `  J
) )
21 eleq2 2690 . . . . . . . . . . . 12  |-  ( c  =  ( X  \ 
y )  ->  (
x  e.  c  <->  x  e.  ( X  \  y
) ) )
2221notbid 308 . . . . . . . . . . 11  |-  ( c  =  ( X  \ 
y )  ->  ( -.  x  e.  c  <->  -.  x  e.  ( X 
\  y ) ) )
23 eldif 3584 . . . . . . . . . . . . 13  |-  ( x  e.  ( X  \ 
y )  <->  ( x  e.  X  /\  -.  x  e.  y ) )
2423baibr 945 . . . . . . . . . . . 12  |-  ( x  e.  X  ->  ( -.  x  e.  y  <->  x  e.  ( X  \ 
y ) ) )
2524con1bid 345 . . . . . . . . . . 11  |-  ( x  e.  X  ->  ( -.  x  e.  ( X  \  y )  <->  x  e.  y ) )
2622, 25sylan9bb 736 . . . . . . . . . 10  |-  ( ( c  =  ( X 
\  y )  /\  x  e.  X )  ->  ( -.  x  e.  c  <->  x  e.  y
) )
27 simpl 473 . . . . . . . . . . . . 13  |-  ( ( c  =  ( X 
\  y )  /\  x  e.  X )  ->  c  =  ( X 
\  y ) )
2827sseq1d 3632 . . . . . . . . . . . 12  |-  ( ( c  =  ( X 
\  y )  /\  x  e.  X )  ->  ( c  C_  o  <->  ( X  \  y ) 
C_  o ) )
29283anbi1d 1403 . . . . . . . . . . 11  |-  ( ( c  =  ( X 
\  y )  /\  x  e.  X )  ->  ( ( c  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) )  <->  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )
30292rexbidv 3057 . . . . . . . . . 10  |-  ( ( c  =  ( X 
\  y )  /\  x  e.  X )  ->  ( E. o  e.  J  E. p  e.  J  ( c  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) )  <->  E. o  e.  J  E. p  e.  J  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )
3126, 30imbi12d 334 . . . . . . . . 9  |-  ( ( c  =  ( X 
\  y )  /\  x  e.  X )  ->  ( ( -.  x  e.  c  ->  E. o  e.  J  E. p  e.  J  ( c  C_  o  /\  x  e.  p  /\  ( o  i^i  p )  =  (/) ) )  <->  ( x  e.  y  ->  E. o  e.  J  E. p  e.  J  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) ) )
3231ralbidva 2985 . . . . . . . 8  |-  ( c  =  ( X  \ 
y )  ->  ( A. x  e.  X  ( -.  x  e.  c  ->  E. o  e.  J  E. p  e.  J  ( c  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) )  <->  A. x  e.  X  ( x  e.  y  ->  E. o  e.  J  E. p  e.  J  ( ( X  \ 
y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) ) )
3332rspcv 3305 . . . . . . 7  |-  ( ( X  \  y )  e.  ( Clsd `  J
)  ->  ( A. c  e.  ( Clsd `  J ) A. x  e.  X  ( -.  x  e.  c  ->  E. o  e.  J  E. p  e.  J  (
c  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) )  ->  A. x  e.  X  ( x  e.  y  ->  E. o  e.  J  E. p  e.  J  ( ( X  \ 
y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) ) )
3420, 33syl 17 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  y  e.  J )  ->  ( A. c  e.  ( Clsd `  J ) A. x  e.  X  ( -.  x  e.  c  ->  E. o  e.  J  E. p  e.  J  ( c  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) )  ->  A. x  e.  X  ( x  e.  y  ->  E. o  e.  J  E. p  e.  J  ( ( X  \ 
y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) ) )
35 ralcom3 3105 . . . . . . 7  |-  ( A. x  e.  X  (
x  e.  y  ->  E. o  e.  J  E. p  e.  J  ( ( X  \ 
y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) )  <->  A. x  e.  y 
( x  e.  X  ->  E. o  e.  J  E. p  e.  J  ( ( X  \ 
y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )
36 toponss 20731 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  X )  /\  y  e.  J )  ->  y  C_  X )
3736sselda 3603 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J )  /\  x  e.  y )  ->  x  e.  X )
38 simprr2 1110 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  x  e.  p )
395ad3antrrr 766 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  X  =  U. J )
4039difeq1d 3727 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  ( X  \  o )  =  ( U. J  \  o
) )
4114ad3antrrr 766 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  J  e.  Top )
42 simprll 802 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  o  e.  J )
439opncld 20837 . . . . . . . . . . . . . . . . . 18  |-  ( ( J  e.  Top  /\  o  e.  J )  ->  ( U. J  \ 
o )  e.  (
Clsd `  J )
)
4441, 42, 43syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  ( U. J  \  o )  e.  ( Clsd `  J
) )
4540, 44eqeltrd 2701 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  ( X  \  o )  e.  (
Clsd `  J )
)
46 incom 3805 . . . . . . . . . . . . . . . . . 18  |-  ( p  i^i  o )  =  ( o  i^i  p
)
47 simprr3 1111 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  ( o  i^i  p )  =  (/) )
4846, 47syl5eq 2668 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  ( p  i^i  o )  =  (/) )
49 simplll 798 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  J  e.  (TopOn `  X ) )
50 simprlr 803 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  p  e.  J )
51 toponss 20731 . . . . . . . . . . . . . . . . . . 19  |-  ( ( J  e.  (TopOn `  X )  /\  p  e.  J )  ->  p  C_  X )
5249, 50, 51syl2anc 693 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  p  C_  X
)
53 reldisj 4020 . . . . . . . . . . . . . . . . . 18  |-  ( p 
C_  X  ->  (
( p  i^i  o
)  =  (/)  <->  p  C_  ( X  \  o ) ) )
5452, 53syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  ( (
p  i^i  o )  =  (/)  <->  p  C_  ( X 
\  o ) ) )
5548, 54mpbid 222 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  p  C_  ( X  \  o ) )
569clsss2 20876 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  \  o
)  e.  ( Clsd `  J )  /\  p  C_  ( X  \  o
) )  ->  (
( cls `  J
) `  p )  C_  ( X  \  o
) )
5745, 55, 56syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  ( ( cls `  J ) `  p )  C_  ( X  \  o ) )
58 simprr1 1109 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  ( X  \  y )  C_  o
)
59 difcom 4053 . . . . . . . . . . . . . . . 16  |-  ( ( X  \  y ) 
C_  o  <->  ( X  \  o )  C_  y
)
6058, 59sylib 208 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  ( X  \  o )  C_  y
)
6157, 60sstrd 3613 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  ( ( cls `  J ) `  p )  C_  y
)
6238, 61jca 554 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  ( x  e.  p  /\  (
( cls `  J
) `  p )  C_  y ) )
6362expr 643 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
o  e.  J  /\  p  e.  J )
)  ->  ( (
( X  \  y
)  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) )  -> 
( x  e.  p  /\  ( ( cls `  J
) `  p )  C_  y ) ) )
6463anassrs 680 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  y  e.  J )  /\  x  e.  y )  /\  o  e.  J )  /\  p  e.  J )  ->  (
( ( X  \ 
y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) )  -> 
( x  e.  p  /\  ( ( cls `  J
) `  p )  C_  y ) ) )
6564reximdva 3017 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  o  e.  J )  ->  ( E. p  e.  J  ( ( X  \ 
y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) )  ->  E. p  e.  J  ( x  e.  p  /\  ( ( cls `  J
) `  p )  C_  y ) ) )
6665rexlimdva 3031 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J )  /\  x  e.  y )  ->  ( E. o  e.  J  E. p  e.  J  ( ( X  \ 
y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) )  ->  E. p  e.  J  ( x  e.  p  /\  ( ( cls `  J
) `  p )  C_  y ) ) )
6737, 66embantd 59 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J )  /\  x  e.  y )  ->  (
( x  e.  X  ->  E. o  e.  J  E. p  e.  J  ( ( X  \ 
y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) )  ->  E. p  e.  J  ( x  e.  p  /\  ( ( cls `  J
) `  p )  C_  y ) ) )
6867ralimdva 2962 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  y  e.  J )  ->  ( A. x  e.  y 
( x  e.  X  ->  E. o  e.  J  E. p  e.  J  ( ( X  \ 
y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) )  ->  A. x  e.  y  E. p  e.  J  ( x  e.  p  /\  ( ( cls `  J
) `  p )  C_  y ) ) )
6935, 68syl5bi 232 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  y  e.  J )  ->  ( A. x  e.  X  ( x  e.  y  ->  E. o  e.  J  E. p  e.  J  ( ( X  \ 
y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) )  ->  A. x  e.  y  E. p  e.  J  ( x  e.  p  /\  ( ( cls `  J
) `  p )  C_  y ) ) )
7034, 69syld 47 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  y  e.  J )  ->  ( A. c  e.  ( Clsd `  J ) A. x  e.  X  ( -.  x  e.  c  ->  E. o  e.  J  E. p  e.  J  ( c  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) )  ->  A. x  e.  y  E. p  e.  J  ( x  e.  p  /\  ( ( cls `  J
) `  p )  C_  y ) ) )
7170ralrimdva 2969 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  ( A. c  e.  ( Clsd `  J ) A. x  e.  X  ( -.  x  e.  c  ->  E. o  e.  J  E. p  e.  J  (
c  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) )  ->  A. y  e.  J  A. x  e.  y  E. p  e.  J  ( x  e.  p  /\  ( ( cls `  J
) `  p )  C_  y ) ) )
7271imp 445 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A. c  e.  ( Clsd `  J ) A. x  e.  X  ( -.  x  e.  c  ->  E. o  e.  J  E. p  e.  J  (
c  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  A. y  e.  J  A. x  e.  y  E. p  e.  J  ( x  e.  p  /\  (
( cls `  J
) `  p )  C_  y ) )
73 isreg 21136 . . 3  |-  ( J  e.  Reg  <->  ( J  e.  Top  /\  A. y  e.  J  A. x  e.  y  E. p  e.  J  ( x  e.  p  /\  (
( cls `  J
) `  p )  C_  y ) ) )
7415, 72, 73sylanbrc 698 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  A. c  e.  ( Clsd `  J ) A. x  e.  X  ( -.  x  e.  c  ->  E. o  e.  J  E. p  e.  J  (
c  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  J  e.  Reg )
7513, 74impbida 877 1  |-  ( J  e.  (TopOn `  X
)  ->  ( J  e.  Reg  <->  A. c  e.  (
Clsd `  J ) A. x  e.  X  ( -.  x  e.  c  ->  E. o  e.  J  E. p  e.  J  ( c  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   U.cuni 4436   ` cfv 5888   Topctop 20698  TopOnctopon 20715   Clsdccld 20820   clsccl 20822   Regcreg 21113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-top 20699  df-topon 20716  df-cld 20823  df-cls 20825  df-reg 21120
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator