Step | Hyp | Ref
| Expression |
1 | | df-slw 17951 |
. . 3
pSyl    SubGrp   SubGrp    
pGrp 
↾s       |
2 | 1 | elmpt2cl 6876 |
. 2
  pSyl 

   |
3 | | simp1 1061 |
. . 3
  SubGrp   SubGrp    
pGrp 
↾s    
  |
4 | | subgrcl 17599 |
. . . 4
 SubGrp 
  |
5 | 4 | 3ad2ant2 1083 |
. . 3
  SubGrp   SubGrp    
pGrp 
↾s    
  |
6 | 3, 5 | jca 554 |
. 2
  SubGrp   SubGrp    
pGrp 
↾s    

   |
7 | | simpr 477 |
. . . . . . . . 9
 
   |
8 | 7 | fveq2d 6195 |
. . . . . . . 8
 
 SubGrp  SubGrp    |
9 | | simpl 473 |
. . . . . . . . . . . 12
 
   |
10 | 7 | oveq1d 6665 |
. . . . . . . . . . . 12
 
 
↾s  
↾s    |
11 | 9, 10 | breq12d 4666 |
. . . . . . . . . . 11
 
  pGrp  ↾s 
pGrp  ↾s     |
12 | 11 | anbi2d 740 |
. . . . . . . . . 10
 
   pGrp  ↾s  
 pGrp  ↾s      |
13 | 12 | bibi1d 333 |
. . . . . . . . 9
 
    pGrp 
↾s      pGrp  ↾s  
    |
14 | 8, 13 | raleqbidv 3152 |
. . . . . . . 8
 
   SubGrp     pGrp  ↾s  

 SubGrp     pGrp  ↾s  
    |
15 | 8, 14 | rabeqbidv 3195 |
. . . . . . 7
 
  SubGrp  
SubGrp     pGrp 
↾s      SubGrp   SubGrp    
pGrp 
↾s       |
16 | | fvex 6201 |
. . . . . . . 8
SubGrp   |
17 | 16 | rabex 4813 |
. . . . . . 7
 SubGrp   SubGrp    
pGrp 
↾s      |
18 | 15, 1, 17 | ovmpt2a 6791 |
. . . . . 6
    pSyl   SubGrp  
SubGrp     pGrp 
↾s       |
19 | 18 | eleq2d 2687 |
. . . . 5
   
 pSyl 
 SubGrp   SubGrp    
pGrp 
↾s        |
20 | | sseq1 3626 |
. . . . . . . . 9
 
   |
21 | 20 | anbi1d 741 |
. . . . . . . 8
  
pGrp  ↾s  
 pGrp  ↾s      |
22 | | eqeq1 2626 |
. . . . . . . 8
 
   |
23 | 21, 22 | bibi12d 335 |
. . . . . . 7
    pGrp  ↾s  

  pGrp 
↾s       |
24 | 23 | ralbidv 2986 |
. . . . . 6
  
SubGrp    
pGrp 
↾s    
SubGrp    
pGrp 
↾s       |
25 | 24 | elrab 3363 |
. . . . 5
  SubGrp   SubGrp    
pGrp 
↾s      SubGrp   SubGrp    
pGrp 
↾s       |
26 | 19, 25 | syl6bb 276 |
. . . 4
   
 pSyl   SubGrp   SubGrp    
pGrp 
↾s        |
27 | | simpl 473 |
. . . . 5
     |
28 | 27 | biantrurd 529 |
. . . 4
     SubGrp  
SubGrp     pGrp 
↾s       SubGrp   SubGrp    
pGrp 
↾s         |
29 | 26, 28 | bitrd 268 |
. . 3
   
 pSyl    SubGrp   SubGrp    
pGrp 
↾s         |
30 | | 3anass 1042 |
. . 3
  SubGrp   SubGrp    
pGrp 
↾s       SubGrp   SubGrp    
pGrp 
↾s        |
31 | 29, 30 | syl6bbr 278 |
. 2
   
 pSyl   SubGrp  
SubGrp     pGrp 
↾s        |
32 | 2, 6, 31 | pm5.21nii 368 |
1
  pSyl   SubGrp  
SubGrp     pGrp 
↾s       |