MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isslw Structured version   Visualization version   Unicode version

Theorem isslw 18023
Description: The property of being a Sylow subgroup. A Sylow  P-subgroup is a  P-group which has no proper supersets that are also  P-groups. (Contributed by Mario Carneiro, 16-Jan-2015.)
Assertion
Ref Expression
isslw  |-  ( H  e.  ( P pSyl  G
)  <->  ( P  e. 
Prime  /\  H  e.  (SubGrp `  G )  /\  A. k  e.  (SubGrp `  G
) ( ( H 
C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
H  =  k ) ) )
Distinct variable groups:    k, G    k, H    P, k

Proof of Theorem isslw
Dummy variables  g  h  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-slw 17951 . . 3  |- pSyl  =  ( p  e.  Prime ,  g  e.  Grp  |->  { h  e.  (SubGrp `  g )  |  A. k  e.  (SubGrp `  g ) ( ( h  C_  k  /\  p pGrp  ( gs  k ) )  <-> 
h  =  k ) } )
21elmpt2cl 6876 . 2  |-  ( H  e.  ( P pSyl  G
)  ->  ( P  e.  Prime  /\  G  e.  Grp ) )
3 simp1 1061 . . 3  |-  ( ( P  e.  Prime  /\  H  e.  (SubGrp `  G )  /\  A. k  e.  (SubGrp `  G ) ( ( H  C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
H  =  k ) )  ->  P  e.  Prime )
4 subgrcl 17599 . . . 4  |-  ( H  e.  (SubGrp `  G
)  ->  G  e.  Grp )
543ad2ant2 1083 . . 3  |-  ( ( P  e.  Prime  /\  H  e.  (SubGrp `  G )  /\  A. k  e.  (SubGrp `  G ) ( ( H  C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
H  =  k ) )  ->  G  e.  Grp )
63, 5jca 554 . 2  |-  ( ( P  e.  Prime  /\  H  e.  (SubGrp `  G )  /\  A. k  e.  (SubGrp `  G ) ( ( H  C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
H  =  k ) )  ->  ( P  e.  Prime  /\  G  e.  Grp ) )
7 simpr 477 . . . . . . . . 9  |-  ( ( p  =  P  /\  g  =  G )  ->  g  =  G )
87fveq2d 6195 . . . . . . . 8  |-  ( ( p  =  P  /\  g  =  G )  ->  (SubGrp `  g )  =  (SubGrp `  G )
)
9 simpl 473 . . . . . . . . . . . 12  |-  ( ( p  =  P  /\  g  =  G )  ->  p  =  P )
107oveq1d 6665 . . . . . . . . . . . 12  |-  ( ( p  =  P  /\  g  =  G )  ->  ( gs  k )  =  ( Gs  k ) )
119, 10breq12d 4666 . . . . . . . . . . 11  |-  ( ( p  =  P  /\  g  =  G )  ->  ( p pGrp  ( gs  k )  <->  P pGrp  ( Gs  k
) ) )
1211anbi2d 740 . . . . . . . . . 10  |-  ( ( p  =  P  /\  g  =  G )  ->  ( ( h  C_  k  /\  p pGrp  ( gs  k ) )  <->  ( h  C_  k  /\  P pGrp  ( Gs  k ) ) ) )
1312bibi1d 333 . . . . . . . . 9  |-  ( ( p  =  P  /\  g  =  G )  ->  ( ( ( h 
C_  k  /\  p pGrp  ( gs  k ) )  <-> 
h  =  k )  <-> 
( ( h  C_  k  /\  P pGrp  ( Gs  k ) )  <->  h  =  k ) ) )
148, 13raleqbidv 3152 . . . . . . . 8  |-  ( ( p  =  P  /\  g  =  G )  ->  ( A. k  e.  (SubGrp `  g )
( ( h  C_  k  /\  p pGrp  ( gs  k ) )  <->  h  =  k )  <->  A. k  e.  (SubGrp `  G )
( ( h  C_  k  /\  P pGrp  ( Gs  k ) )  <->  h  =  k ) ) )
158, 14rabeqbidv 3195 . . . . . . 7  |-  ( ( p  =  P  /\  g  =  G )  ->  { h  e.  (SubGrp `  g )  |  A. k  e.  (SubGrp `  g
) ( ( h 
C_  k  /\  p pGrp  ( gs  k ) )  <-> 
h  =  k ) }  =  { h  e.  (SubGrp `  G )  |  A. k  e.  (SubGrp `  G ) ( ( h  C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
h  =  k ) } )
16 fvex 6201 . . . . . . . 8  |-  (SubGrp `  G )  e.  _V
1716rabex 4813 . . . . . . 7  |-  { h  e.  (SubGrp `  G )  |  A. k  e.  (SubGrp `  G ) ( ( h  C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
h  =  k ) }  e.  _V
1815, 1, 17ovmpt2a 6791 . . . . . 6  |-  ( ( P  e.  Prime  /\  G  e.  Grp )  ->  ( P pSyl  G )  =  {
h  e.  (SubGrp `  G )  |  A. k  e.  (SubGrp `  G
) ( ( h 
C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
h  =  k ) } )
1918eleq2d 2687 . . . . 5  |-  ( ( P  e.  Prime  /\  G  e.  Grp )  ->  ( H  e.  ( P pSyl  G )  <->  H  e.  { h  e.  (SubGrp `  G )  |  A. k  e.  (SubGrp `  G ) ( ( h  C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
h  =  k ) } ) )
20 sseq1 3626 . . . . . . . . 9  |-  ( h  =  H  ->  (
h  C_  k  <->  H  C_  k
) )
2120anbi1d 741 . . . . . . . 8  |-  ( h  =  H  ->  (
( h  C_  k  /\  P pGrp  ( Gs  k
) )  <->  ( H  C_  k  /\  P pGrp  ( Gs  k ) ) ) )
22 eqeq1 2626 . . . . . . . 8  |-  ( h  =  H  ->  (
h  =  k  <->  H  =  k ) )
2321, 22bibi12d 335 . . . . . . 7  |-  ( h  =  H  ->  (
( ( h  C_  k  /\  P pGrp  ( Gs  k ) )  <->  h  =  k )  <->  ( ( H  C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
H  =  k ) ) )
2423ralbidv 2986 . . . . . 6  |-  ( h  =  H  ->  ( A. k  e.  (SubGrp `  G ) ( ( h  C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
h  =  k )  <->  A. k  e.  (SubGrp `  G ) ( ( H  C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
H  =  k ) ) )
2524elrab 3363 . . . . 5  |-  ( H  e.  { h  e.  (SubGrp `  G )  |  A. k  e.  (SubGrp `  G ) ( ( h  C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
h  =  k ) }  <->  ( H  e.  (SubGrp `  G )  /\  A. k  e.  (SubGrp `  G ) ( ( H  C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
H  =  k ) ) )
2619, 25syl6bb 276 . . . 4  |-  ( ( P  e.  Prime  /\  G  e.  Grp )  ->  ( H  e.  ( P pSyl  G )  <->  ( H  e.  (SubGrp `  G )  /\  A. k  e.  (SubGrp `  G ) ( ( H  C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
H  =  k ) ) ) )
27 simpl 473 . . . . 5  |-  ( ( P  e.  Prime  /\  G  e.  Grp )  ->  P  e.  Prime )
2827biantrurd 529 . . . 4  |-  ( ( P  e.  Prime  /\  G  e.  Grp )  ->  (
( H  e.  (SubGrp `  G )  /\  A. k  e.  (SubGrp `  G
) ( ( H 
C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
H  =  k ) )  <->  ( P  e. 
Prime  /\  ( H  e.  (SubGrp `  G )  /\  A. k  e.  (SubGrp `  G ) ( ( H  C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
H  =  k ) ) ) ) )
2926, 28bitrd 268 . . 3  |-  ( ( P  e.  Prime  /\  G  e.  Grp )  ->  ( H  e.  ( P pSyl  G )  <->  ( P  e. 
Prime  /\  ( H  e.  (SubGrp `  G )  /\  A. k  e.  (SubGrp `  G ) ( ( H  C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
H  =  k ) ) ) ) )
30 3anass 1042 . . 3  |-  ( ( P  e.  Prime  /\  H  e.  (SubGrp `  G )  /\  A. k  e.  (SubGrp `  G ) ( ( H  C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
H  =  k ) )  <->  ( P  e. 
Prime  /\  ( H  e.  (SubGrp `  G )  /\  A. k  e.  (SubGrp `  G ) ( ( H  C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
H  =  k ) ) ) )
3129, 30syl6bbr 278 . 2  |-  ( ( P  e.  Prime  /\  G  e.  Grp )  ->  ( H  e.  ( P pSyl  G )  <->  ( P  e. 
Prime  /\  H  e.  (SubGrp `  G )  /\  A. k  e.  (SubGrp `  G
) ( ( H 
C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
H  =  k ) ) ) )
322, 6, 31pm5.21nii 368 1  |-  ( H  e.  ( P pSyl  G
)  <->  ( P  e. 
Prime  /\  H  e.  (SubGrp `  G )  /\  A. k  e.  (SubGrp `  G
) ( ( H 
C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
H  =  k ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916    C_ wss 3574   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Primecprime 15385   ↾s cress 15858   Grpcgrp 17422  SubGrpcsubg 17588   pGrp cpgp 17946   pSyl cslw 17947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-subg 17591  df-slw 17951
This theorem is referenced by:  slwprm  18024  slwsubg  18025  slwispgp  18026  pgpssslw  18029  subgslw  18031  fislw  18040
  Copyright terms: Public domain W3C validator