MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpssslw Structured version   Visualization version   Unicode version

Theorem pgpssslw 18029
Description: Every  P-subgroup is contained in a Sylow  P-subgroup. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypotheses
Ref Expression
pgpssslw.1  |-  X  =  ( Base `  G
)
pgpssslw.2  |-  S  =  ( Gs  H )
pgpssslw.3  |-  F  =  ( x  e.  {
y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) }  |->  ( # `  x ) )
Assertion
Ref Expression
pgpssslw  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  E. k  e.  ( P pSyl  G ) H  C_  k )
Distinct variable groups:    x, k,
y, G    k, H, x, y    P, k, x, y    k, X, x   
k, F    S, k, x, y
Allowed substitution hints:    F( x, y)    X( y)

Proof of Theorem pgpssslw
Dummy variables  m  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1062 . . . . . . . . . 10  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  X  e.  Fin )
2 elrabi 3359 . . . . . . . . . . 11  |-  ( x  e.  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y ) }  ->  x  e.  (SubGrp `  G
) )
3 pgpssslw.1 . . . . . . . . . . . 12  |-  X  =  ( Base `  G
)
43subgss 17595 . . . . . . . . . . 11  |-  ( x  e.  (SubGrp `  G
)  ->  x  C_  X
)
52, 4syl 17 . . . . . . . . . 10  |-  ( x  e.  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y ) }  ->  x 
C_  X )
6 ssfi 8180 . . . . . . . . . 10  |-  ( ( X  e.  Fin  /\  x  C_  X )  ->  x  e.  Fin )
71, 5, 6syl2an 494 . . . . . . . . 9  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  x  e.  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) } )  ->  x  e.  Fin )
8 hashcl 13147 . . . . . . . . 9  |-  ( x  e.  Fin  ->  ( # `
 x )  e. 
NN0 )
97, 8syl 17 . . . . . . . 8  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  x  e.  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) } )  -> 
( # `  x )  e.  NN0 )
109nn0zd 11480 . . . . . . 7  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  x  e.  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) } )  -> 
( # `  x )  e.  ZZ )
11 pgpssslw.3 . . . . . . 7  |-  F  =  ( x  e.  {
y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) }  |->  ( # `  x ) )
1210, 11fmptd 6385 . . . . . 6  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  F : { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) } --> ZZ )
13 frn 6053 . . . . . 6  |-  ( F : { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y ) } --> ZZ  ->  ran 
F  C_  ZZ )
1412, 13syl 17 . . . . 5  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  ran  F  C_  ZZ )
15 fvex 6201 . . . . . . . 8  |-  ( # `  x )  e.  _V
1615, 11fnmpti 6022 . . . . . . 7  |-  F  Fn  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) }
17 simp1 1061 . . . . . . . 8  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  H  e.  (SubGrp `  G ) )
18 simp3 1063 . . . . . . . 8  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  P pGrp  S )
19 eqimss2 3658 . . . . . . . . . . 11  |-  ( y  =  H  ->  H  C_  y )
2019biantrud 528 . . . . . . . . . 10  |-  ( y  =  H  ->  ( P pGrp  ( Gs  y )  <->  ( P pGrp  ( Gs  y )  /\  H  C_  y ) ) )
21 oveq2 6658 . . . . . . . . . . . 12  |-  ( y  =  H  ->  ( Gs  y )  =  ( Gs  H ) )
22 pgpssslw.2 . . . . . . . . . . . 12  |-  S  =  ( Gs  H )
2321, 22syl6eqr 2674 . . . . . . . . . . 11  |-  ( y  =  H  ->  ( Gs  y )  =  S )
2423breq2d 4665 . . . . . . . . . 10  |-  ( y  =  H  ->  ( P pGrp  ( Gs  y )  <->  P pGrp  S ) )
2520, 24bitr3d 270 . . . . . . . . 9  |-  ( y  =  H  ->  (
( P pGrp  ( Gs  y
)  /\  H  C_  y
)  <->  P pGrp  S )
)
2625elrab 3363 . . . . . . . 8  |-  ( H  e.  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y ) }  <->  ( H  e.  (SubGrp `  G )  /\  P pGrp  S )
)
2717, 18, 26sylanbrc 698 . . . . . . 7  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  H  e.  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) } )
28 fnfvelrn 6356 . . . . . . 7  |-  ( ( F  Fn  { y  e.  (SubGrp `  G
)  |  ( P pGrp  ( Gs  y )  /\  H  C_  y ) }  /\  H  e.  {
y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) } )  -> 
( F `  H
)  e.  ran  F
)
2916, 27, 28sylancr 695 . . . . . 6  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  ( F `  H )  e.  ran  F )
30 ne0i 3921 . . . . . 6  |-  ( ( F `  H )  e.  ran  F  ->  ran  F  =/=  (/) )
3129, 30syl 17 . . . . 5  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  ran  F  =/=  (/) )
32 hashcl 13147 . . . . . . . 8  |-  ( X  e.  Fin  ->  ( # `
 X )  e. 
NN0 )
331, 32syl 17 . . . . . . 7  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  ( # `  X
)  e.  NN0 )
3433nn0red 11352 . . . . . 6  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  ( # `  X
)  e.  RR )
35 fveq2 6191 . . . . . . . . . . 11  |-  ( x  =  m  ->  ( # `
 x )  =  ( # `  m
) )
36 fvex 6201 . . . . . . . . . . 11  |-  ( # `  m )  e.  _V
3735, 11, 36fvmpt 6282 . . . . . . . . . 10  |-  ( m  e.  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y ) }  ->  ( F `  m )  =  ( # `  m
) )
3837adantl 482 . . . . . . . . 9  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  m  e.  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) } )  -> 
( F `  m
)  =  ( # `  m ) )
39 oveq2 6658 . . . . . . . . . . . . 13  |-  ( y  =  m  ->  ( Gs  y )  =  ( Gs  m ) )
4039breq2d 4665 . . . . . . . . . . . 12  |-  ( y  =  m  ->  ( P pGrp  ( Gs  y )  <->  P pGrp  ( Gs  m ) ) )
41 sseq2 3627 . . . . . . . . . . . 12  |-  ( y  =  m  ->  ( H  C_  y  <->  H  C_  m
) )
4240, 41anbi12d 747 . . . . . . . . . . 11  |-  ( y  =  m  ->  (
( P pGrp  ( Gs  y
)  /\  H  C_  y
)  <->  ( P pGrp  ( Gs  m )  /\  H  C_  m ) ) )
4342elrab 3363 . . . . . . . . . 10  |-  ( m  e.  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y ) }  <->  ( m  e.  (SubGrp `  G )  /\  ( P pGrp  ( Gs  m )  /\  H  C_  m ) ) )
441adantr 481 . . . . . . . . . . . 12  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  ( m  e.  (SubGrp `  G )  /\  ( P pGrp  ( Gs  m )  /\  H  C_  m ) ) )  ->  X  e.  Fin )
453subgss 17595 . . . . . . . . . . . . 13  |-  ( m  e.  (SubGrp `  G
)  ->  m  C_  X
)
4645ad2antrl 764 . . . . . . . . . . . 12  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  ( m  e.  (SubGrp `  G )  /\  ( P pGrp  ( Gs  m )  /\  H  C_  m ) ) )  ->  m  C_  X
)
47 ssdomg 8001 . . . . . . . . . . . 12  |-  ( X  e.  Fin  ->  (
m  C_  X  ->  m  ~<_  X ) )
4844, 46, 47sylc 65 . . . . . . . . . . 11  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  ( m  e.  (SubGrp `  G )  /\  ( P pGrp  ( Gs  m )  /\  H  C_  m ) ) )  ->  m  ~<_  X )
49 ssfi 8180 . . . . . . . . . . . . 13  |-  ( ( X  e.  Fin  /\  m  C_  X )  ->  m  e.  Fin )
5044, 46, 49syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  ( m  e.  (SubGrp `  G )  /\  ( P pGrp  ( Gs  m )  /\  H  C_  m ) ) )  ->  m  e.  Fin )
51 hashdom 13168 . . . . . . . . . . . 12  |-  ( ( m  e.  Fin  /\  X  e.  Fin )  ->  ( ( # `  m
)  <_  ( # `  X
)  <->  m  ~<_  X )
)
5250, 44, 51syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  ( m  e.  (SubGrp `  G )  /\  ( P pGrp  ( Gs  m )  /\  H  C_  m ) ) )  ->  ( ( # `  m )  <_  ( # `
 X )  <->  m  ~<_  X ) )
5348, 52mpbird 247 . . . . . . . . . 10  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  ( m  e.  (SubGrp `  G )  /\  ( P pGrp  ( Gs  m )  /\  H  C_  m ) ) )  ->  ( # `  m
)  <_  ( # `  X
) )
5443, 53sylan2b 492 . . . . . . . . 9  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  m  e.  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) } )  -> 
( # `  m )  <_  ( # `  X
) )
5538, 54eqbrtrd 4675 . . . . . . . 8  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  m  e.  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) } )  -> 
( F `  m
)  <_  ( # `  X
) )
5655ralrimiva 2966 . . . . . . 7  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  A. m  e.  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) }  ( F `
 m )  <_ 
( # `  X ) )
57 breq1 4656 . . . . . . . . 9  |-  ( w  =  ( F `  m )  ->  (
w  <_  ( # `  X
)  <->  ( F `  m )  <_  ( # `
 X ) ) )
5857ralrn 6362 . . . . . . . 8  |-  ( F  Fn  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y ) }  ->  ( A. w  e.  ran  F  w  <_  ( # `  X
)  <->  A. m  e.  {
y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) }  ( F `
 m )  <_ 
( # `  X ) ) )
5916, 58ax-mp 5 . . . . . . 7  |-  ( A. w  e.  ran  F  w  <_  ( # `  X
)  <->  A. m  e.  {
y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) }  ( F `
 m )  <_ 
( # `  X ) )
6056, 59sylibr 224 . . . . . 6  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  A. w  e.  ran  F  w  <_ 
( # `  X ) )
61 breq2 4657 . . . . . . . 8  |-  ( z  =  ( # `  X
)  ->  ( w  <_  z  <->  w  <_  ( # `  X ) ) )
6261ralbidv 2986 . . . . . . 7  |-  ( z  =  ( # `  X
)  ->  ( A. w  e.  ran  F  w  <_  z  <->  A. w  e.  ran  F  w  <_ 
( # `  X ) ) )
6362rspcev 3309 . . . . . 6  |-  ( ( ( # `  X
)  e.  RR  /\  A. w  e.  ran  F  w  <_  ( # `  X
) )  ->  E. z  e.  RR  A. w  e. 
ran  F  w  <_  z )
6434, 60, 63syl2anc 693 . . . . 5  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  E. z  e.  RR  A. w  e. 
ran  F  w  <_  z )
65 suprzcl 11457 . . . . 5  |-  ( ( ran  F  C_  ZZ  /\ 
ran  F  =/=  (/)  /\  E. z  e.  RR  A. w  e.  ran  F  w  <_ 
z )  ->  sup ( ran  F ,  RR ,  <  )  e.  ran  F )
6614, 31, 64, 65syl3anc 1326 . . . 4  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  sup ( ran  F ,  RR ,  <  )  e.  ran  F
)
67 fvelrnb 6243 . . . . 5  |-  ( F  Fn  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y ) }  ->  ( sup ( ran  F ,  RR ,  <  )  e.  ran  F  <->  E. k  e.  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) }  ( F `
 k )  =  sup ( ran  F ,  RR ,  <  )
) )
6816, 67ax-mp 5 . . . 4  |-  ( sup ( ran  F ,  RR ,  <  )  e. 
ran  F  <->  E. k  e.  {
y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) }  ( F `
 k )  =  sup ( ran  F ,  RR ,  <  )
)
6966, 68sylib 208 . . 3  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  E. k  e.  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) }  ( F `
 k )  =  sup ( ran  F ,  RR ,  <  )
)
70 oveq2 6658 . . . . . 6  |-  ( y  =  k  ->  ( Gs  y )  =  ( Gs  k ) )
7170breq2d 4665 . . . . 5  |-  ( y  =  k  ->  ( P pGrp  ( Gs  y )  <->  P pGrp  ( Gs  k ) ) )
72 sseq2 3627 . . . . 5  |-  ( y  =  k  ->  ( H  C_  y  <->  H  C_  k
) )
7371, 72anbi12d 747 . . . 4  |-  ( y  =  k  ->  (
( P pGrp  ( Gs  y
)  /\  H  C_  y
)  <->  ( P pGrp  ( Gs  k )  /\  H  C_  k ) ) )
7473rexrab 3370 . . 3  |-  ( E. k  e.  { y  e.  (SubGrp `  G
)  |  ( P pGrp  ( Gs  y )  /\  H  C_  y ) }  ( F `  k
)  =  sup ( ran  F ,  RR ,  <  )  <->  E. k  e.  (SubGrp `  G ) ( ( P pGrp  ( Gs  k )  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) )
7569, 74sylib 208 . 2  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  E. k  e.  (SubGrp `  G )
( ( P pGrp  ( Gs  k )  /\  H  C_  k )  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  )
) )
76 simpl3 1066 . . . . . . 7  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  ( k  e.  (SubGrp `  G )  /\  ( ( P pGrp  ( Gs  k )  /\  H  C_  k )  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  )
) ) )  ->  P pGrp  S )
77 pgpprm 18008 . . . . . . 7  |-  ( P pGrp 
S  ->  P  e.  Prime )
7876, 77syl 17 . . . . . 6  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  ( k  e.  (SubGrp `  G )  /\  ( ( P pGrp  ( Gs  k )  /\  H  C_  k )  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  )
) ) )  ->  P  e.  Prime )
79 simprl 794 . . . . . 6  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  ( k  e.  (SubGrp `  G )  /\  ( ( P pGrp  ( Gs  k )  /\  H  C_  k )  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  )
) ) )  -> 
k  e.  (SubGrp `  G ) )
80 zssre 11384 . . . . . . . . . . . . . . . 16  |-  ZZ  C_  RR
8114, 80syl6ss 3615 . . . . . . . . . . . . . . 15  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  ran  F  C_  RR )
8281ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  ran  F  C_  RR )
8331ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  ran  F  =/=  (/) )
8464ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  E. z  e.  RR  A. w  e. 
ran  F  w  <_  z )
85 simprl 794 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  m  e.  (SubGrp `  G ) )
86 simprrr 805 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  P pGrp  ( Gs  m ) )
87 simprrl 804 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  ( k  e.  (SubGrp `  G )  /\  ( ( P pGrp  ( Gs  k )  /\  H  C_  k )  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  )
) ) )  -> 
( P pGrp  ( Gs  k
)  /\  H  C_  k
) )
8887adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  ( P pGrp  ( Gs  k )  /\  H  C_  k ) )
8988simprd 479 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  H  C_  k
)
90 simprrl 804 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  k  C_  m )
9189, 90sstrd 3613 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  H  C_  m
)
9286, 91jca 554 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  ( P pGrp  ( Gs  m )  /\  H  C_  m ) )
9385, 92, 43sylanbrc 698 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  m  e.  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) } )
9493, 37syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  ( F `  m )  =  (
# `  m )
)
95 fnfvelrn 6356 . . . . . . . . . . . . . . . 16  |-  ( ( F  Fn  { y  e.  (SubGrp `  G
)  |  ( P pGrp  ( Gs  y )  /\  H  C_  y ) }  /\  m  e.  {
y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) } )  -> 
( F `  m
)  e.  ran  F
)
9616, 93, 95sylancr 695 . . . . . . . . . . . . . . 15  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  ( F `  m )  e.  ran  F )
9794, 96eqeltrrd 2702 . . . . . . . . . . . . . 14  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  ( # `  m
)  e.  ran  F
)
98 suprub 10984 . . . . . . . . . . . . . 14  |-  ( ( ( ran  F  C_  RR  /\  ran  F  =/=  (/)  /\  E. z  e.  RR  A. w  e. 
ran  F  w  <_  z )  /\  ( # `  m )  e.  ran  F )  ->  ( # `  m
)  <_  sup ( ran  F ,  RR ,  <  ) )
9982, 83, 84, 97, 98syl31anc 1329 . . . . . . . . . . . . 13  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  ( # `  m
)  <_  sup ( ran  F ,  RR ,  <  ) )
100 simprrr 805 . . . . . . . . . . . . . . 15  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  ( k  e.  (SubGrp `  G )  /\  ( ( P pGrp  ( Gs  k )  /\  H  C_  k )  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  )
) ) )  -> 
( F `  k
)  =  sup ( ran  F ,  RR ,  <  ) )
101100adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) )
10279adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  k  e.  (SubGrp `  G ) )
10373elrab 3363 . . . . . . . . . . . . . . . 16  |-  ( k  e.  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y ) }  <->  ( k  e.  (SubGrp `  G )  /\  ( P pGrp  ( Gs  k )  /\  H  C_  k ) ) )
104102, 88, 103sylanbrc 698 . . . . . . . . . . . . . . 15  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  k  e.  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) } )
105 fveq2 6191 . . . . . . . . . . . . . . . 16  |-  ( x  =  k  ->  ( # `
 x )  =  ( # `  k
) )
106 fvex 6201 . . . . . . . . . . . . . . . 16  |-  ( # `  k )  e.  _V
107105, 11, 106fvmpt 6282 . . . . . . . . . . . . . . 15  |-  ( k  e.  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y ) }  ->  ( F `  k )  =  ( # `  k
) )
108104, 107syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  ( F `  k )  =  (
# `  k )
)
109101, 108eqtr3d 2658 . . . . . . . . . . . . 13  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  sup ( ran  F ,  RR ,  <  )  =  ( # `  k ) )
11099, 109breqtrd 4679 . . . . . . . . . . . 12  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  ( # `  m
)  <_  ( # `  k
) )
111 simpll2 1101 . . . . . . . . . . . . . 14  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  X  e.  Fin )
11245ad2antrl 764 . . . . . . . . . . . . . 14  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  m  C_  X
)
113111, 112, 49syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  m  e.  Fin )
114 ssfi 8180 . . . . . . . . . . . . . 14  |-  ( ( m  e.  Fin  /\  k  C_  m )  -> 
k  e.  Fin )
115113, 90, 114syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  k  e.  Fin )
116 hashcl 13147 . . . . . . . . . . . . . 14  |-  ( m  e.  Fin  ->  ( # `
 m )  e. 
NN0 )
117 hashcl 13147 . . . . . . . . . . . . . 14  |-  ( k  e.  Fin  ->  ( # `
 k )  e. 
NN0 )
118 nn0re 11301 . . . . . . . . . . . . . . 15  |-  ( (
# `  m )  e.  NN0  ->  ( # `  m
)  e.  RR )
119 nn0re 11301 . . . . . . . . . . . . . . 15  |-  ( (
# `  k )  e.  NN0  ->  ( # `  k
)  e.  RR )
120 lenlt 10116 . . . . . . . . . . . . . . 15  |-  ( ( ( # `  m
)  e.  RR  /\  ( # `  k )  e.  RR )  -> 
( ( # `  m
)  <_  ( # `  k
)  <->  -.  ( # `  k
)  <  ( # `  m
) ) )
121118, 119, 120syl2an 494 . . . . . . . . . . . . . 14  |-  ( ( ( # `  m
)  e.  NN0  /\  ( # `  k )  e.  NN0 )  -> 
( ( # `  m
)  <_  ( # `  k
)  <->  -.  ( # `  k
)  <  ( # `  m
) ) )
122116, 117, 121syl2an 494 . . . . . . . . . . . . 13  |-  ( ( m  e.  Fin  /\  k  e.  Fin )  ->  ( ( # `  m
)  <_  ( # `  k
)  <->  -.  ( # `  k
)  <  ( # `  m
) ) )
123113, 115, 122syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  ( ( # `
 m )  <_ 
( # `  k )  <->  -.  ( # `  k
)  <  ( # `  m
) ) )
124110, 123mpbid 222 . . . . . . . . . . 11  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  -.  ( # `
 k )  < 
( # `  m ) )
125 php3 8146 . . . . . . . . . . . . . 14  |-  ( ( m  e.  Fin  /\  k  C.  m )  -> 
k  ~<  m )
126125ex 450 . . . . . . . . . . . . 13  |-  ( m  e.  Fin  ->  (
k  C.  m  ->  k 
~<  m ) )
127113, 126syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  ( k  C.  m  ->  k  ~<  m ) )
128 hashsdom 13170 . . . . . . . . . . . . 13  |-  ( ( k  e.  Fin  /\  m  e.  Fin )  ->  ( ( # `  k
)  <  ( # `  m
)  <->  k  ~<  m
) )
129115, 113, 128syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  ( ( # `
 k )  < 
( # `  m )  <-> 
k  ~<  m ) )
130127, 129sylibrd 249 . . . . . . . . . . 11  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  ( k  C.  m  ->  ( # `  k
)  <  ( # `  m
) ) )
131124, 130mtod 189 . . . . . . . . . 10  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  -.  k  C.  m )
132 sspss 3706 . . . . . . . . . . . 12  |-  ( k 
C_  m  <->  ( k  C.  m  \/  k  =  m ) )
13390, 132sylib 208 . . . . . . . . . . 11  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  ( k  C.  m  \/  k  =  m ) )
134133ord 392 . . . . . . . . . 10  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  ( -.  k  C.  m  ->  k  =  m ) )
135131, 134mpd 15 . . . . . . . . 9  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  k  =  m )
136135expr 643 . . . . . . . 8  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  m  e.  (SubGrp `  G )
)  ->  ( (
k  C_  m  /\  P pGrp  ( Gs  m ) )  -> 
k  =  m ) )
13787simpld 475 . . . . . . . . . 10  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  ( k  e.  (SubGrp `  G )  /\  ( ( P pGrp  ( Gs  k )  /\  H  C_  k )  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  )
) ) )  ->  P pGrp  ( Gs  k ) )
138137adantr 481 . . . . . . . . 9  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  m  e.  (SubGrp `  G )
)  ->  P pGrp  ( Gs  k ) )
139 oveq2 6658 . . . . . . . . . . 11  |-  ( k  =  m  ->  ( Gs  k )  =  ( Gs  m ) )
140139breq2d 4665 . . . . . . . . . 10  |-  ( k  =  m  ->  ( P pGrp  ( Gs  k )  <->  P pGrp  ( Gs  m ) ) )
141 eqimss 3657 . . . . . . . . . . 11  |-  ( k  =  m  ->  k  C_  m )
142141biantrurd 529 . . . . . . . . . 10  |-  ( k  =  m  ->  ( P pGrp  ( Gs  m )  <->  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )
143140, 142bitrd 268 . . . . . . . . 9  |-  ( k  =  m  ->  ( P pGrp  ( Gs  k )  <->  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )
144138, 143syl5ibcom 235 . . . . . . . 8  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  m  e.  (SubGrp `  G )
)  ->  ( k  =  m  ->  ( k 
C_  m  /\  P pGrp  ( Gs  m ) ) ) )
145136, 144impbid 202 . . . . . . 7  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  m  e.  (SubGrp `  G )
)  ->  ( (
k  C_  m  /\  P pGrp  ( Gs  m ) )  <->  k  =  m ) )
146145ralrimiva 2966 . . . . . 6  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  ( k  e.  (SubGrp `  G )  /\  ( ( P pGrp  ( Gs  k )  /\  H  C_  k )  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  )
) ) )  ->  A. m  e.  (SubGrp `  G ) ( ( k  C_  m  /\  P pGrp  ( Gs  m ) )  <->  k  =  m ) )
147 isslw 18023 . . . . . 6  |-  ( k  e.  ( P pSyl  G
)  <->  ( P  e. 
Prime  /\  k  e.  (SubGrp `  G )  /\  A. m  e.  (SubGrp `  G
) ( ( k 
C_  m  /\  P pGrp  ( Gs  m ) )  <->  k  =  m ) ) )
14878, 79, 146, 147syl3anbrc 1246 . . . . 5  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  ( k  e.  (SubGrp `  G )  /\  ( ( P pGrp  ( Gs  k )  /\  H  C_  k )  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  )
) ) )  -> 
k  e.  ( P pSyl 
G ) )
14987simprd 479 . . . . 5  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  ( k  e.  (SubGrp `  G )  /\  ( ( P pGrp  ( Gs  k )  /\  H  C_  k )  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  )
) ) )  ->  H  C_  k )
150148, 149jca 554 . . . 4  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  ( k  e.  (SubGrp `  G )  /\  ( ( P pGrp  ( Gs  k )  /\  H  C_  k )  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  )
) ) )  -> 
( k  e.  ( P pSyl  G )  /\  H  C_  k ) )
151150ex 450 . . 3  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  ( (
k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) )  ->  ( k  e.  ( P pSyl  G )  /\  H  C_  k
) ) )
152151reximdv2 3014 . 2  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  ( E. k  e.  (SubGrp `  G
) ( ( P pGrp  ( Gs  k )  /\  H  C_  k )  /\  ( F `  k )  =  sup ( ran 
F ,  RR ,  <  ) )  ->  E. k  e.  ( P pSyl  G ) H  C_  k )
)
15375, 152mpd 15 1  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  E. k  e.  ( P pSyl  G ) H  C_  k )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916    C_ wss 3574    C. wpss 3575   (/)c0 3915   class class class wbr 4653    |-> cmpt 4729   ran crn 5115    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    ~<_ cdom 7953    ~< csdm 7954   Fincfn 7955   supcsup 8346   RRcr 9935    < clt 10074    <_ cle 10075   NN0cn0 11292   ZZcz 11377   #chash 13117   Primecprime 15385   Basecbs 15857   ↾s cress 15858  SubGrpcsubg 17588   pGrp cpgp 17946   pSyl cslw 17947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-subg 17591  df-pgp 17950  df-slw 17951
This theorem is referenced by:  slwn0  18030
  Copyright terms: Public domain W3C validator