MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fislw Structured version   Visualization version   Unicode version

Theorem fislw 18040
Description: The sylow subgroups of a finite group are exactly the groups which have cardinality equal to the maximum power of  P dividing the group. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypothesis
Ref Expression
fislw.1  |-  X  =  ( Base `  G
)
Assertion
Ref Expression
fislw  |-  ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  ->  ( H  e.  ( P pSyl  G )  <->  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) ) )

Proof of Theorem fislw
Dummy variables  k  n  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . 4  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  H  e.  ( P pSyl  G ) )  ->  H  e.  ( P pSyl  G ) )
2 slwsubg 18025 . . . 4  |-  ( H  e.  ( P pSyl  G
)  ->  H  e.  (SubGrp `  G ) )
31, 2syl 17 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  H  e.  ( P pSyl  G ) )  ->  H  e.  (SubGrp `  G )
)
4 fislw.1 . . . 4  |-  X  =  ( Base `  G
)
5 simpl2 1065 . . . 4  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  H  e.  ( P pSyl  G ) )  ->  X  e.  Fin )
64, 5, 1slwhash 18039 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  H  e.  ( P pSyl  G ) )  ->  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) )
73, 6jca 554 . 2  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  H  e.  ( P pSyl  G ) )  ->  ( H  e.  (SubGrp `  G
)  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )
8 simpl3 1066 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  P  e.  Prime )
9 simprl 794 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  H  e.  (SubGrp `  G ) )
10 simpl2 1065 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  X  e.  Fin )
1110adantr 481 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  X  e.  Fin )
12 simprl 794 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  k  e.  (SubGrp `  G ) )
134subgss 17595 . . . . . . . . 9  |-  ( k  e.  (SubGrp `  G
)  ->  k  C_  X )
1412, 13syl 17 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  k  C_  X
)
15 ssfi 8180 . . . . . . . 8  |-  ( ( X  e.  Fin  /\  k  C_  X )  -> 
k  e.  Fin )
1611, 14, 15syl2anc 693 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  k  e.  Fin )
17 simprrl 804 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  H  C_  k
)
18 ssdomg 8001 . . . . . . . . 9  |-  ( k  e.  Fin  ->  ( H  C_  k  ->  H  ~<_  k ) )
1916, 17, 18sylc 65 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  H  ~<_  k )
20 simprrr 805 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  P pGrp  ( Gs  k
) )
21 eqid 2622 . . . . . . . . . . . . . . . . . 18  |-  ( Gs  k )  =  ( Gs  k )
2221subggrp 17597 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  (SubGrp `  G
)  ->  ( Gs  k
)  e.  Grp )
2312, 22syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( Gs  k )  e.  Grp )
2421subgbas 17598 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  (SubGrp `  G
)  ->  k  =  ( Base `  ( Gs  k
) ) )
2512, 24syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  k  =  (
Base `  ( Gs  k
) ) )
2625, 16eqeltrrd 2702 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( Base `  ( Gs  k ) )  e. 
Fin )
27 eqid 2622 . . . . . . . . . . . . . . . . 17  |-  ( Base `  ( Gs  k ) )  =  ( Base `  ( Gs  k ) )
2827pgpfi 18020 . . . . . . . . . . . . . . . 16  |-  ( ( ( Gs  k )  e. 
Grp  /\  ( Base `  ( Gs  k ) )  e.  Fin )  -> 
( P pGrp  ( Gs  k
)  <->  ( P  e. 
Prime  /\  E. n  e. 
NN0  ( # `  ( Base `  ( Gs  k ) ) )  =  ( P ^ n ) ) ) )
2923, 26, 28syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( P pGrp  ( Gs  k )  <->  ( P  e.  Prime  /\  E. n  e.  NN0  ( # `  ( Base `  ( Gs  k ) ) )  =  ( P ^ n ) ) ) )
3020, 29mpbid 222 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( P  e. 
Prime  /\  E. n  e. 
NN0  ( # `  ( Base `  ( Gs  k ) ) )  =  ( P ^ n ) ) )
3130simpld 475 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  P  e.  Prime )
32 prmnn 15388 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  P  e.  NN )
3331, 32syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  P  e.  NN )
3433nnred 11035 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  P  e.  RR )
3533nnge1d 11063 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  1  <_  P
)
36 eqid 2622 . . . . . . . . . . . . . . . . . 18  |-  ( 0g
`  G )  =  ( 0g `  G
)
3736subg0cl 17602 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  k )
3812, 37syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( 0g `  G )  e.  k )
39 ne0i 3921 . . . . . . . . . . . . . . . 16  |-  ( ( 0g `  G )  e.  k  ->  k  =/=  (/) )
4038, 39syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  k  =/=  (/) )
41 hashnncl 13157 . . . . . . . . . . . . . . . 16  |-  ( k  e.  Fin  ->  (
( # `  k )  e.  NN  <->  k  =/=  (/) ) )
4216, 41syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( ( # `  k )  e.  NN  <->  k  =/=  (/) ) )
4340, 42mpbird 247 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( # `  k
)  e.  NN )
4431, 43pccld 15555 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( P  pCnt  (
# `  k )
)  e.  NN0 )
4544nn0zd 11480 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( P  pCnt  (
# `  k )
)  e.  ZZ )
46 simpl1 1064 . . . . . . . . . . . . . . . . 17  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  G  e.  Grp )
474grpbn0 17451 . . . . . . . . . . . . . . . . 17  |-  ( G  e.  Grp  ->  X  =/=  (/) )
4846, 47syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  X  =/=  (/) )
49 hashnncl 13157 . . . . . . . . . . . . . . . . 17  |-  ( X  e.  Fin  ->  (
( # `  X )  e.  NN  <->  X  =/=  (/) ) )
5010, 49syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  ( ( # `
 X )  e.  NN  <->  X  =/=  (/) ) )
5148, 50mpbird 247 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  ( # `  X
)  e.  NN )
528, 51pccld 15555 . . . . . . . . . . . . . 14  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  ( P  pCnt  ( # `  X
) )  e.  NN0 )
5352adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( P  pCnt  (
# `  X )
)  e.  NN0 )
5453nn0zd 11480 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( P  pCnt  (
# `  X )
)  e.  ZZ )
554lagsubg 17656 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  (SubGrp `  G )  /\  X  e.  Fin )  ->  ( # `
 k )  ||  ( # `  X ) )
5612, 11, 55syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( # `  k
)  ||  ( # `  X
) )
5743nnzd 11481 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( # `  k
)  e.  ZZ )
5851adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( # `  X
)  e.  NN )
5958nnzd 11481 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( # `  X
)  e.  ZZ )
60 pc2dvds 15583 . . . . . . . . . . . . . . 15  |-  ( ( ( # `  k
)  e.  ZZ  /\  ( # `  X )  e.  ZZ )  -> 
( ( # `  k
)  ||  ( # `  X
)  <->  A. p  e.  Prime  ( p  pCnt  ( # `  k
) )  <_  (
p  pCnt  ( # `  X
) ) ) )
6157, 59, 60syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( ( # `  k )  ||  ( # `
 X )  <->  A. p  e.  Prime  ( p  pCnt  (
# `  k )
)  <_  ( p  pCnt  ( # `  X
) ) ) )
6256, 61mpbid 222 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  A. p  e.  Prime  ( p  pCnt  ( # `  k
) )  <_  (
p  pCnt  ( # `  X
) ) )
63 oveq1 6657 . . . . . . . . . . . . . . 15  |-  ( p  =  P  ->  (
p  pCnt  ( # `  k
) )  =  ( P  pCnt  ( # `  k
) ) )
64 oveq1 6657 . . . . . . . . . . . . . . 15  |-  ( p  =  P  ->  (
p  pCnt  ( # `  X
) )  =  ( P  pCnt  ( # `  X
) ) )
6563, 64breq12d 4666 . . . . . . . . . . . . . 14  |-  ( p  =  P  ->  (
( p  pCnt  ( # `
 k ) )  <_  ( p  pCnt  (
# `  X )
)  <->  ( P  pCnt  (
# `  k )
)  <_  ( P  pCnt  ( # `  X
) ) ) )
6665rspcv 3305 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  ( A. p  e.  Prime  ( p 
pCnt  ( # `  k
) )  <_  (
p  pCnt  ( # `  X
) )  ->  ( P  pCnt  ( # `  k
) )  <_  ( P  pCnt  ( # `  X
) ) ) )
6731, 62, 66sylc 65 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( P  pCnt  (
# `  k )
)  <_  ( P  pCnt  ( # `  X
) ) )
68 eluz2 11693 . . . . . . . . . . . 12  |-  ( ( P  pCnt  ( # `  X
) )  e.  (
ZZ>= `  ( P  pCnt  (
# `  k )
) )  <->  ( ( P  pCnt  ( # `  k
) )  e.  ZZ  /\  ( P  pCnt  ( # `
 X ) )  e.  ZZ  /\  ( P  pCnt  ( # `  k
) )  <_  ( P  pCnt  ( # `  X
) ) ) )
6945, 54, 67, 68syl3anbrc 1246 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( P  pCnt  (
# `  X )
)  e.  ( ZZ>= `  ( P  pCnt  ( # `  k ) ) ) )
7034, 35, 69leexp2ad 13041 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( P ^
( P  pCnt  ( # `
 k ) ) )  <_  ( P ^ ( P  pCnt  (
# `  X )
) ) )
7130simprd 479 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  E. n  e.  NN0  ( # `  ( Base `  ( Gs  k ) ) )  =  ( P ^ n ) )
7225fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( # `  k
)  =  ( # `  ( Base `  ( Gs  k ) ) ) )
7372eqeq1d 2624 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( ( # `  k )  =  ( P ^ n )  <-> 
( # `  ( Base `  ( Gs  k ) ) )  =  ( P ^ n ) ) )
7473rexbidv 3052 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( E. n  e.  NN0  ( # `  k
)  =  ( P ^ n )  <->  E. n  e.  NN0  ( # `  ( Base `  ( Gs  k ) ) )  =  ( P ^ n ) ) )
7571, 74mpbird 247 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  E. n  e.  NN0  ( # `  k )  =  ( P ^
n ) )
76 pcprmpw 15587 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  ( # `
 k )  e.  NN )  ->  ( E. n  e.  NN0  ( # `  k )  =  ( P ^
n )  <->  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  k )
) ) ) )
7731, 43, 76syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( E. n  e.  NN0  ( # `  k
)  =  ( P ^ n )  <->  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  k )
) ) ) )
7875, 77mpbid 222 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  k )
) ) )
79 simplrr 801 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
8070, 78, 793brtr4d 4685 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( # `  k
)  <_  ( # `  H
) )
814subgss 17595 . . . . . . . . . . . . 13  |-  ( H  e.  (SubGrp `  G
)  ->  H  C_  X
)
8281ad2antrl 764 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  H  C_  X
)
83 ssfi 8180 . . . . . . . . . . . 12  |-  ( ( X  e.  Fin  /\  H  C_  X )  ->  H  e.  Fin )
8410, 82, 83syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  H  e.  Fin )
8584adantr 481 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  H  e.  Fin )
86 hashdom 13168 . . . . . . . . . 10  |-  ( ( k  e.  Fin  /\  H  e.  Fin )  ->  ( ( # `  k
)  <_  ( # `  H
)  <->  k  ~<_  H ) )
8716, 85, 86syl2anc 693 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( ( # `  k )  <_  ( # `
 H )  <->  k  ~<_  H ) )
8880, 87mpbid 222 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  k  ~<_  H )
89 sbth 8080 . . . . . . . 8  |-  ( ( H  ~<_  k  /\  k  ~<_  H )  ->  H  ~~  k )
9019, 88, 89syl2anc 693 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  H  ~~  k
)
91 fisseneq 8171 . . . . . . 7  |-  ( ( k  e.  Fin  /\  H  C_  k  /\  H  ~~  k )  ->  H  =  k )
9216, 17, 90, 91syl3anc 1326 . . . . . 6  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  H  =  k )
9392expr 643 . . . . 5  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  k  e.  (SubGrp `  G ) )  -> 
( ( H  C_  k  /\  P pGrp  ( Gs  k ) )  ->  H  =  k ) )
94 eqid 2622 . . . . . . . . . . . . 13  |-  ( Gs  H )  =  ( Gs  H )
9594subgbas 17598 . . . . . . . . . . . 12  |-  ( H  e.  (SubGrp `  G
)  ->  H  =  ( Base `  ( Gs  H
) ) )
9695ad2antrl 764 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  H  =  ( Base `  ( Gs  H
) ) )
9796fveq2d 6195 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  ( # `  H
)  =  ( # `  ( Base `  ( Gs  H ) ) ) )
98 simprr 796 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
9997, 98eqtr3d 2658 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  ( # `  ( Base `  ( Gs  H ) ) )  =  ( P ^ ( P 
pCnt  ( # `  X
) ) ) )
100 oveq2 6658 . . . . . . . . . . 11  |-  ( n  =  ( P  pCnt  (
# `  X )
)  ->  ( P ^ n )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) )
101100eqeq2d 2632 . . . . . . . . . 10  |-  ( n  =  ( P  pCnt  (
# `  X )
)  ->  ( ( # `
 ( Base `  ( Gs  H ) ) )  =  ( P ^
n )  <->  ( # `  ( Base `  ( Gs  H ) ) )  =  ( P ^ ( P 
pCnt  ( # `  X
) ) ) ) )
102101rspcev 3309 . . . . . . . . 9  |-  ( ( ( P  pCnt  ( # `
 X ) )  e.  NN0  /\  ( # `
 ( Base `  ( Gs  H ) ) )  =  ( P ^
( P  pCnt  ( # `
 X ) ) ) )  ->  E. n  e.  NN0  ( # `  ( Base `  ( Gs  H ) ) )  =  ( P ^ n ) )
10352, 99, 102syl2anc 693 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  E. n  e.  NN0  ( # `  ( Base `  ( Gs  H ) ) )  =  ( P ^ n ) )
10494subggrp 17597 . . . . . . . . . 10  |-  ( H  e.  (SubGrp `  G
)  ->  ( Gs  H
)  e.  Grp )
105104ad2antrl 764 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  ( Gs  H
)  e.  Grp )
10696, 84eqeltrrd 2702 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  ( Base `  ( Gs  H ) )  e. 
Fin )
107 eqid 2622 . . . . . . . . . 10  |-  ( Base `  ( Gs  H ) )  =  ( Base `  ( Gs  H ) )
108107pgpfi 18020 . . . . . . . . 9  |-  ( ( ( Gs  H )  e.  Grp  /\  ( Base `  ( Gs  H ) )  e. 
Fin )  ->  ( P pGrp  ( Gs  H )  <->  ( P  e.  Prime  /\  E. n  e.  NN0  ( # `  ( Base `  ( Gs  H ) ) )  =  ( P ^ n ) ) ) )
109105, 106, 108syl2anc 693 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  ( P pGrp  ( Gs  H )  <->  ( P  e.  Prime  /\  E. n  e.  NN0  ( # `  ( Base `  ( Gs  H ) ) )  =  ( P ^ n ) ) ) )
1108, 103, 109mpbir2and 957 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  P pGrp  ( Gs  H ) )
111110adantr 481 . . . . . 6  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  k  e.  (SubGrp `  G ) )  ->  P pGrp  ( Gs  H ) )
112 oveq2 6658 . . . . . . . 8  |-  ( H  =  k  ->  ( Gs  H )  =  ( Gs  k ) )
113112breq2d 4665 . . . . . . 7  |-  ( H  =  k  ->  ( P pGrp  ( Gs  H )  <->  P pGrp  ( Gs  k ) ) )
114 eqimss 3657 . . . . . . . 8  |-  ( H  =  k  ->  H  C_  k )
115114biantrurd 529 . . . . . . 7  |-  ( H  =  k  ->  ( P pGrp  ( Gs  k )  <->  ( H  C_  k  /\  P pGrp  ( Gs  k ) ) ) )
116113, 115bitrd 268 . . . . . 6  |-  ( H  =  k  ->  ( P pGrp  ( Gs  H )  <->  ( H  C_  k  /\  P pGrp  ( Gs  k ) ) ) )
117111, 116syl5ibcom 235 . . . . 5  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  k  e.  (SubGrp `  G ) )  -> 
( H  =  k  ->  ( H  C_  k  /\  P pGrp  ( Gs  k ) ) ) )
11893, 117impbid 202 . . . 4  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  k  e.  (SubGrp `  G ) )  -> 
( ( H  C_  k  /\  P pGrp  ( Gs  k ) )  <->  H  =  k ) )
119118ralrimiva 2966 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  A. k  e.  (SubGrp `  G )
( ( H  C_  k  /\  P pGrp  ( Gs  k ) )  <->  H  =  k ) )
120 isslw 18023 . . 3  |-  ( H  e.  ( P pSyl  G
)  <->  ( P  e. 
Prime  /\  H  e.  (SubGrp `  G )  /\  A. k  e.  (SubGrp `  G
) ( ( H 
C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
H  =  k ) ) )
1218, 9, 119, 120syl3anbrc 1246 . 2  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  H  e.  ( P pSyl  G )
)
1227, 121impbida 877 1  |-  ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  ->  ( H  e.  ( P pSyl  G )  <->  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    C_ wss 3574   (/)c0 3915   class class class wbr 4653   ` cfv 5888  (class class class)co 6650    ~~ cen 7952    ~<_ cdom 7953   Fincfn 7955    <_ cle 10075   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ^cexp 12860   #chash 13117    || cdvds 14983   Primecprime 15385    pCnt cpc 15541   Basecbs 15857   ↾s cress 15858   0gc0g 16100   Grpcgrp 17422  SubGrpcsubg 17588   pGrp cpgp 17946   pSyl cslw 17947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-eqg 17593  df-ghm 17658  df-ga 17723  df-od 17948  df-pgp 17950  df-slw 17951
This theorem is referenced by:  sylow3lem1  18042
  Copyright terms: Public domain W3C validator