MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltsonq Structured version   Visualization version   Unicode version

Theorem ltsonq 9791
Description: 'Less than' is a strict ordering on positive fractions. (Contributed by NM, 19-Feb-1996.) (Revised by Mario Carneiro, 4-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltsonq  |-  <Q  Or  Q.

Proof of Theorem ltsonq
Dummy variables  s 
r  t  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpqn 9747 . . . . . . 7  |-  ( x  e.  Q.  ->  x  e.  ( N.  X.  N. ) )
21adantr 481 . . . . . 6  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  x  e.  ( N. 
X.  N. ) )
3 xp1st 7198 . . . . . 6  |-  ( x  e.  ( N.  X.  N. )  ->  ( 1st `  x )  e.  N. )
42, 3syl 17 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( 1st `  x
)  e.  N. )
5 elpqn 9747 . . . . . . 7  |-  ( y  e.  Q.  ->  y  e.  ( N.  X.  N. ) )
65adantl 482 . . . . . 6  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  y  e.  ( N. 
X.  N. ) )
7 xp2nd 7199 . . . . . 6  |-  ( y  e.  ( N.  X.  N. )  ->  ( 2nd `  y )  e.  N. )
86, 7syl 17 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( 2nd `  y
)  e.  N. )
9 mulclpi 9715 . . . . 5  |-  ( ( ( 1st `  x
)  e.  N.  /\  ( 2nd `  y )  e.  N. )  -> 
( ( 1st `  x
)  .N  ( 2nd `  y ) )  e. 
N. )
104, 8, 9syl2anc 693 . . . 4  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( ( 1st `  x
)  .N  ( 2nd `  y ) )  e. 
N. )
11 xp1st 7198 . . . . . 6  |-  ( y  e.  ( N.  X.  N. )  ->  ( 1st `  y )  e.  N. )
126, 11syl 17 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( 1st `  y
)  e.  N. )
13 xp2nd 7199 . . . . . 6  |-  ( x  e.  ( N.  X.  N. )  ->  ( 2nd `  x )  e.  N. )
142, 13syl 17 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( 2nd `  x
)  e.  N. )
15 mulclpi 9715 . . . . 5  |-  ( ( ( 1st `  y
)  e.  N.  /\  ( 2nd `  x )  e.  N. )  -> 
( ( 1st `  y
)  .N  ( 2nd `  x ) )  e. 
N. )
1612, 14, 15syl2anc 693 . . . 4  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( ( 1st `  y
)  .N  ( 2nd `  x ) )  e. 
N. )
17 ltsopi 9710 . . . . 5  |-  <N  Or  N.
18 sotric 5061 . . . . 5  |-  ( ( 
<N  Or  N.  /\  (
( ( 1st `  x
)  .N  ( 2nd `  y ) )  e. 
N.  /\  ( ( 1st `  y )  .N  ( 2nd `  x
) )  e.  N. ) )  ->  (
( ( 1st `  x
)  .N  ( 2nd `  y ) )  <N 
( ( 1st `  y
)  .N  ( 2nd `  x ) )  <->  -.  (
( ( 1st `  x
)  .N  ( 2nd `  y ) )  =  ( ( 1st `  y
)  .N  ( 2nd `  x ) )  \/  ( ( 1st `  y
)  .N  ( 2nd `  x ) )  <N 
( ( 1st `  x
)  .N  ( 2nd `  y ) ) ) ) )
1917, 18mpan 706 . . . 4  |-  ( ( ( ( 1st `  x
)  .N  ( 2nd `  y ) )  e. 
N.  /\  ( ( 1st `  y )  .N  ( 2nd `  x
) )  e.  N. )  ->  ( ( ( 1st `  x )  .N  ( 2nd `  y
) )  <N  (
( 1st `  y
)  .N  ( 2nd `  x ) )  <->  -.  (
( ( 1st `  x
)  .N  ( 2nd `  y ) )  =  ( ( 1st `  y
)  .N  ( 2nd `  x ) )  \/  ( ( 1st `  y
)  .N  ( 2nd `  x ) )  <N 
( ( 1st `  x
)  .N  ( 2nd `  y ) ) ) ) )
2010, 16, 19syl2anc 693 . . 3  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( ( ( 1st `  x )  .N  ( 2nd `  y ) ) 
<N  ( ( 1st `  y
)  .N  ( 2nd `  x ) )  <->  -.  (
( ( 1st `  x
)  .N  ( 2nd `  y ) )  =  ( ( 1st `  y
)  .N  ( 2nd `  x ) )  \/  ( ( 1st `  y
)  .N  ( 2nd `  x ) )  <N 
( ( 1st `  x
)  .N  ( 2nd `  y ) ) ) ) )
21 ordpinq 9765 . . 3  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x  <Q  y  <->  ( ( 1st `  x
)  .N  ( 2nd `  y ) )  <N 
( ( 1st `  y
)  .N  ( 2nd `  x ) ) ) )
22 fveq2 6191 . . . . . . 7  |-  ( x  =  y  ->  ( 1st `  x )  =  ( 1st `  y
) )
23 fveq2 6191 . . . . . . . 8  |-  ( x  =  y  ->  ( 2nd `  x )  =  ( 2nd `  y
) )
2423eqcomd 2628 . . . . . . 7  |-  ( x  =  y  ->  ( 2nd `  y )  =  ( 2nd `  x
) )
2522, 24oveq12d 6668 . . . . . 6  |-  ( x  =  y  ->  (
( 1st `  x
)  .N  ( 2nd `  y ) )  =  ( ( 1st `  y
)  .N  ( 2nd `  x ) ) )
26 enqbreq2 9742 . . . . . . . 8  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  ->  (
x  ~Q  y  <->  ( ( 1st `  x )  .N  ( 2nd `  y
) )  =  ( ( 1st `  y
)  .N  ( 2nd `  x ) ) ) )
271, 5, 26syl2an 494 . . . . . . 7  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x  ~Q  y  <->  ( ( 1st `  x
)  .N  ( 2nd `  y ) )  =  ( ( 1st `  y
)  .N  ( 2nd `  x ) ) ) )
28 enqeq 9756 . . . . . . . 8  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  x  ~Q  y )  ->  x  =  y )
29283expia 1267 . . . . . . 7  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x  ~Q  y  ->  x  =  y ) )
3027, 29sylbird 250 . . . . . 6  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( ( ( 1st `  x )  .N  ( 2nd `  y ) )  =  ( ( 1st `  y )  .N  ( 2nd `  x ) )  ->  x  =  y ) )
3125, 30impbid2 216 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x  =  y  <-> 
( ( 1st `  x
)  .N  ( 2nd `  y ) )  =  ( ( 1st `  y
)  .N  ( 2nd `  x ) ) ) )
32 ordpinq 9765 . . . . . 6  |-  ( ( y  e.  Q.  /\  x  e.  Q. )  ->  ( y  <Q  x  <->  ( ( 1st `  y
)  .N  ( 2nd `  x ) )  <N 
( ( 1st `  x
)  .N  ( 2nd `  y ) ) ) )
3332ancoms 469 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( y  <Q  x  <->  ( ( 1st `  y
)  .N  ( 2nd `  x ) )  <N 
( ( 1st `  x
)  .N  ( 2nd `  y ) ) ) )
3431, 33orbi12d 746 . . . 4  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( ( x  =  y  \/  y  <Q  x )  <->  ( (
( 1st `  x
)  .N  ( 2nd `  y ) )  =  ( ( 1st `  y
)  .N  ( 2nd `  x ) )  \/  ( ( 1st `  y
)  .N  ( 2nd `  x ) )  <N 
( ( 1st `  x
)  .N  ( 2nd `  y ) ) ) ) )
3534notbid 308 . . 3  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( -.  ( x  =  y  \/  y  <Q  x )  <->  -.  (
( ( 1st `  x
)  .N  ( 2nd `  y ) )  =  ( ( 1st `  y
)  .N  ( 2nd `  x ) )  \/  ( ( 1st `  y
)  .N  ( 2nd `  x ) )  <N 
( ( 1st `  x
)  .N  ( 2nd `  y ) ) ) ) )
3620, 21, 353bitr4d 300 . 2  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x  <Q  y  <->  -.  ( x  =  y  \/  y  <Q  x
) ) )
37213adant3 1081 . . . . . 6  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
x  <Q  y  <->  ( ( 1st `  x )  .N  ( 2nd `  y
) )  <N  (
( 1st `  y
)  .N  ( 2nd `  x ) ) ) )
38 elpqn 9747 . . . . . . . 8  |-  ( z  e.  Q.  ->  z  e.  ( N.  X.  N. ) )
39383ad2ant3 1084 . . . . . . 7  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  z  e.  ( N.  X.  N. ) )
40 xp2nd 7199 . . . . . . 7  |-  ( z  e.  ( N.  X.  N. )  ->  ( 2nd `  z )  e.  N. )
41 ltmpi 9726 . . . . . . 7  |-  ( ( 2nd `  z )  e.  N.  ->  (
( ( 1st `  x
)  .N  ( 2nd `  y ) )  <N 
( ( 1st `  y
)  .N  ( 2nd `  x ) )  <->  ( ( 2nd `  z )  .N  ( ( 1st `  x
)  .N  ( 2nd `  y ) ) ) 
<N  ( ( 2nd `  z
)  .N  ( ( 1st `  y )  .N  ( 2nd `  x
) ) ) ) )
4239, 40, 413syl 18 . . . . . 6  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
( ( 1st `  x
)  .N  ( 2nd `  y ) )  <N 
( ( 1st `  y
)  .N  ( 2nd `  x ) )  <->  ( ( 2nd `  z )  .N  ( ( 1st `  x
)  .N  ( 2nd `  y ) ) ) 
<N  ( ( 2nd `  z
)  .N  ( ( 1st `  y )  .N  ( 2nd `  x
) ) ) ) )
4337, 42bitrd 268 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
x  <Q  y  <->  ( ( 2nd `  z )  .N  ( ( 1st `  x
)  .N  ( 2nd `  y ) ) ) 
<N  ( ( 2nd `  z
)  .N  ( ( 1st `  y )  .N  ( 2nd `  x
) ) ) ) )
44 ordpinq 9765 . . . . . . 7  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  <Q  z  <->  ( ( 1st `  y
)  .N  ( 2nd `  z ) )  <N 
( ( 1st `  z
)  .N  ( 2nd `  y ) ) ) )
45443adant1 1079 . . . . . 6  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
y  <Q  z  <->  ( ( 1st `  y )  .N  ( 2nd `  z
) )  <N  (
( 1st `  z
)  .N  ( 2nd `  y ) ) ) )
4613ad2ant1 1082 . . . . . . 7  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  x  e.  ( N.  X.  N. ) )
47 ltmpi 9726 . . . . . . 7  |-  ( ( 2nd `  x )  e.  N.  ->  (
( ( 1st `  y
)  .N  ( 2nd `  z ) )  <N 
( ( 1st `  z
)  .N  ( 2nd `  y ) )  <->  ( ( 2nd `  x )  .N  ( ( 1st `  y
)  .N  ( 2nd `  z ) ) ) 
<N  ( ( 2nd `  x
)  .N  ( ( 1st `  z )  .N  ( 2nd `  y
) ) ) ) )
4846, 13, 473syl 18 . . . . . 6  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
( ( 1st `  y
)  .N  ( 2nd `  z ) )  <N 
( ( 1st `  z
)  .N  ( 2nd `  y ) )  <->  ( ( 2nd `  x )  .N  ( ( 1st `  y
)  .N  ( 2nd `  z ) ) ) 
<N  ( ( 2nd `  x
)  .N  ( ( 1st `  z )  .N  ( 2nd `  y
) ) ) ) )
4945, 48bitrd 268 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
y  <Q  z  <->  ( ( 2nd `  x )  .N  ( ( 1st `  y
)  .N  ( 2nd `  z ) ) ) 
<N  ( ( 2nd `  x
)  .N  ( ( 1st `  z )  .N  ( 2nd `  y
) ) ) ) )
5043, 49anbi12d 747 . . . 4  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
( x  <Q  y  /\  y  <Q  z )  <-> 
( ( ( 2nd `  z )  .N  (
( 1st `  x
)  .N  ( 2nd `  y ) ) ) 
<N  ( ( 2nd `  z
)  .N  ( ( 1st `  y )  .N  ( 2nd `  x
) ) )  /\  ( ( 2nd `  x
)  .N  ( ( 1st `  y )  .N  ( 2nd `  z
) ) )  <N 
( ( 2nd `  x
)  .N  ( ( 1st `  z )  .N  ( 2nd `  y
) ) ) ) ) )
51 fvex 6201 . . . . . . 7  |-  ( 2nd `  x )  e.  _V
52 fvex 6201 . . . . . . 7  |-  ( 1st `  y )  e.  _V
53 fvex 6201 . . . . . . 7  |-  ( 2nd `  z )  e.  _V
54 mulcompi 9718 . . . . . . 7  |-  ( r  .N  s )  =  ( s  .N  r
)
55 mulasspi 9719 . . . . . . 7  |-  ( ( r  .N  s )  .N  t )  =  ( r  .N  (
s  .N  t ) )
5651, 52, 53, 54, 55caov13 6864 . . . . . 6  |-  ( ( 2nd `  x )  .N  ( ( 1st `  y )  .N  ( 2nd `  z ) ) )  =  ( ( 2nd `  z )  .N  ( ( 1st `  y )  .N  ( 2nd `  x ) ) )
57 fvex 6201 . . . . . . 7  |-  ( 1st `  z )  e.  _V
58 fvex 6201 . . . . . . 7  |-  ( 2nd `  y )  e.  _V
5951, 57, 58, 54, 55caov13 6864 . . . . . 6  |-  ( ( 2nd `  x )  .N  ( ( 1st `  z )  .N  ( 2nd `  y ) ) )  =  ( ( 2nd `  y )  .N  ( ( 1st `  z )  .N  ( 2nd `  x ) ) )
6056, 59breq12i 4662 . . . . 5  |-  ( ( ( 2nd `  x
)  .N  ( ( 1st `  y )  .N  ( 2nd `  z
) ) )  <N 
( ( 2nd `  x
)  .N  ( ( 1st `  z )  .N  ( 2nd `  y
) ) )  <->  ( ( 2nd `  z )  .N  ( ( 1st `  y
)  .N  ( 2nd `  x ) ) ) 
<N  ( ( 2nd `  y
)  .N  ( ( 1st `  z )  .N  ( 2nd `  x
) ) ) )
61 fvex 6201 . . . . . . 7  |-  ( 1st `  x )  e.  _V
6253, 61, 58, 54, 55caov13 6864 . . . . . 6  |-  ( ( 2nd `  z )  .N  ( ( 1st `  x )  .N  ( 2nd `  y ) ) )  =  ( ( 2nd `  y )  .N  ( ( 1st `  x )  .N  ( 2nd `  z ) ) )
63 ltrelpi 9711 . . . . . . 7  |-  <N  C_  ( N.  X.  N. )
6417, 63sotri 5523 . . . . . 6  |-  ( ( ( ( 2nd `  z
)  .N  ( ( 1st `  x )  .N  ( 2nd `  y
) ) )  <N 
( ( 2nd `  z
)  .N  ( ( 1st `  y )  .N  ( 2nd `  x
) ) )  /\  ( ( 2nd `  z
)  .N  ( ( 1st `  y )  .N  ( 2nd `  x
) ) )  <N 
( ( 2nd `  y
)  .N  ( ( 1st `  z )  .N  ( 2nd `  x
) ) ) )  ->  ( ( 2nd `  z )  .N  (
( 1st `  x
)  .N  ( 2nd `  y ) ) ) 
<N  ( ( 2nd `  y
)  .N  ( ( 1st `  z )  .N  ( 2nd `  x
) ) ) )
6562, 64syl5eqbrr 4689 . . . . 5  |-  ( ( ( ( 2nd `  z
)  .N  ( ( 1st `  x )  .N  ( 2nd `  y
) ) )  <N 
( ( 2nd `  z
)  .N  ( ( 1st `  y )  .N  ( 2nd `  x
) ) )  /\  ( ( 2nd `  z
)  .N  ( ( 1st `  y )  .N  ( 2nd `  x
) ) )  <N 
( ( 2nd `  y
)  .N  ( ( 1st `  z )  .N  ( 2nd `  x
) ) ) )  ->  ( ( 2nd `  y )  .N  (
( 1st `  x
)  .N  ( 2nd `  z ) ) ) 
<N  ( ( 2nd `  y
)  .N  ( ( 1st `  z )  .N  ( 2nd `  x
) ) ) )
6660, 65sylan2b 492 . . . 4  |-  ( ( ( ( 2nd `  z
)  .N  ( ( 1st `  x )  .N  ( 2nd `  y
) ) )  <N 
( ( 2nd `  z
)  .N  ( ( 1st `  y )  .N  ( 2nd `  x
) ) )  /\  ( ( 2nd `  x
)  .N  ( ( 1st `  y )  .N  ( 2nd `  z
) ) )  <N 
( ( 2nd `  x
)  .N  ( ( 1st `  z )  .N  ( 2nd `  y
) ) ) )  ->  ( ( 2nd `  y )  .N  (
( 1st `  x
)  .N  ( 2nd `  z ) ) ) 
<N  ( ( 2nd `  y
)  .N  ( ( 1st `  z )  .N  ( 2nd `  x
) ) ) )
6750, 66syl6bi 243 . . 3  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
( x  <Q  y  /\  y  <Q  z )  ->  ( ( 2nd `  y )  .N  (
( 1st `  x
)  .N  ( 2nd `  z ) ) ) 
<N  ( ( 2nd `  y
)  .N  ( ( 1st `  z )  .N  ( 2nd `  x
) ) ) ) )
68 ordpinq 9765 . . . . 5  |-  ( ( x  e.  Q.  /\  z  e.  Q. )  ->  ( x  <Q  z  <->  ( ( 1st `  x
)  .N  ( 2nd `  z ) )  <N 
( ( 1st `  z
)  .N  ( 2nd `  x ) ) ) )
69683adant2 1080 . . . 4  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
x  <Q  z  <->  ( ( 1st `  x )  .N  ( 2nd `  z
) )  <N  (
( 1st `  z
)  .N  ( 2nd `  x ) ) ) )
7053ad2ant2 1083 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  y  e.  ( N.  X.  N. ) )
71 ltmpi 9726 . . . . 5  |-  ( ( 2nd `  y )  e.  N.  ->  (
( ( 1st `  x
)  .N  ( 2nd `  z ) )  <N 
( ( 1st `  z
)  .N  ( 2nd `  x ) )  <->  ( ( 2nd `  y )  .N  ( ( 1st `  x
)  .N  ( 2nd `  z ) ) ) 
<N  ( ( 2nd `  y
)  .N  ( ( 1st `  z )  .N  ( 2nd `  x
) ) ) ) )
7270, 7, 713syl 18 . . . 4  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
( ( 1st `  x
)  .N  ( 2nd `  z ) )  <N 
( ( 1st `  z
)  .N  ( 2nd `  x ) )  <->  ( ( 2nd `  y )  .N  ( ( 1st `  x
)  .N  ( 2nd `  z ) ) ) 
<N  ( ( 2nd `  y
)  .N  ( ( 1st `  z )  .N  ( 2nd `  x
) ) ) ) )
7369, 72bitrd 268 . . 3  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
x  <Q  z  <->  ( ( 2nd `  y )  .N  ( ( 1st `  x
)  .N  ( 2nd `  z ) ) ) 
<N  ( ( 2nd `  y
)  .N  ( ( 1st `  z )  .N  ( 2nd `  x
) ) ) ) )
7467, 73sylibrd 249 . 2  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
( x  <Q  y  /\  y  <Q  z )  ->  x  <Q  z
) )
7536, 74isso2i 5067 1  |-  <Q  Or  Q.
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653    Or wor 5034    X. cxp 5112   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   N.cnpi 9666    .N cmi 9668    <N clti 9669    ~Q ceq 9673   Q.cnq 9674    <Q cltq 9680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-omul 7565  df-er 7742  df-ni 9694  df-mi 9696  df-lti 9697  df-ltpq 9732  df-enq 9733  df-nq 9734  df-ltnq 9740
This theorem is referenced by:  ltbtwnnq  9800  prub  9816  npomex  9818  genpnnp  9827  nqpr  9836  distrlem4pr  9848  prlem934  9855  ltexprlem4  9861  reclem2pr  9870  reclem4pr  9872
  Copyright terms: Public domain W3C validator