MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ist0-4 Structured version   Visualization version   Unicode version

Theorem ist0-4 21532
Description: The topological indistinguishability map is injective iff the space is T0. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
Assertion
Ref Expression
ist0-4  |-  ( J  e.  (TopOn `  X
)  ->  ( J  e.  Kol2  <->  F : X -1-1-> _V ) )
Distinct variable groups:    x, y, J    x, X, y
Allowed substitution hints:    F( x, y)

Proof of Theorem ist0-4
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . . 6  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
21kqfeq 21527 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  z  e.  X  /\  w  e.  X )  ->  (
( F `  z
)  =  ( F `
 w )  <->  A. y  e.  J  ( z  e.  y  <->  w  e.  y
) ) )
323expb 1266 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  (
z  e.  X  /\  w  e.  X )
)  ->  ( ( F `  z )  =  ( F `  w )  <->  A. y  e.  J  ( z  e.  y  <->  w  e.  y
) ) )
43imbi1d 331 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  (
z  e.  X  /\  w  e.  X )
)  ->  ( (
( F `  z
)  =  ( F `
 w )  -> 
z  =  w )  <-> 
( A. y  e.  J  ( z  e.  y  <->  w  e.  y
)  ->  z  =  w ) ) )
542ralbidva 2988 . 2  |-  ( J  e.  (TopOn `  X
)  ->  ( A. z  e.  X  A. w  e.  X  (
( F `  z
)  =  ( F `
 w )  -> 
z  =  w )  <->  A. z  e.  X  A. w  e.  X  ( A. y  e.  J  ( z  e.  y  <-> 
w  e.  y )  ->  z  =  w ) ) )
61kqffn 21528 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  F  Fn  X )
7 dffn2 6047 . . . 4  |-  ( F  Fn  X  <->  F : X
--> _V )
86, 7sylib 208 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  F : X
--> _V )
9 dff13 6512 . . . 4  |-  ( F : X -1-1-> _V  <->  ( F : X --> _V  /\  A. z  e.  X  A. w  e.  X  ( ( F `  z )  =  ( F `  w )  ->  z  =  w ) ) )
109baib 944 . . 3  |-  ( F : X --> _V  ->  ( F : X -1-1-> _V  <->  A. z  e.  X  A. w  e.  X  (
( F `  z
)  =  ( F `
 w )  -> 
z  =  w ) ) )
118, 10syl 17 . 2  |-  ( J  e.  (TopOn `  X
)  ->  ( F : X -1-1-> _V  <->  A. z  e.  X  A. w  e.  X  ( ( F `  z )  =  ( F `  w )  ->  z  =  w ) ) )
12 ist0-2 21148 . 2  |-  ( J  e.  (TopOn `  X
)  ->  ( J  e.  Kol2  <->  A. z  e.  X  A. w  e.  X  ( A. y  e.  J  ( z  e.  y  <-> 
w  e.  y )  ->  z  =  w ) ) )
135, 11, 123bitr4rd 301 1  |-  ( J  e.  (TopOn `  X
)  ->  ( J  e.  Kol2  <->  F : X -1-1-> _V ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200    |-> cmpt 4729    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   ` cfv 5888  TopOnctopon 20715   Kol2ct0 21110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fv 5896  df-topon 20716  df-t0 21117
This theorem is referenced by:  t0kq  21621
  Copyright terms: Public domain W3C validator