MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqffn Structured version   Visualization version   Unicode version

Theorem kqffn 21528
Description: The topological indistinguishability map is a function on the base. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
Assertion
Ref Expression
kqffn  |-  ( J  e.  V  ->  F  Fn  X )
Distinct variable groups:    x, y, J    x, X, y    x, V
Allowed substitution hints:    F( x, y)    V( y)

Proof of Theorem kqffn
StepHypRef Expression
1 ssrab2 3687 . . . . 5  |-  { y  e.  J  |  x  e.  y }  C_  J
2 elpw2g 4827 . . . . 5  |-  ( J  e.  V  ->  ( { y  e.  J  |  x  e.  y }  e.  ~P J  <->  { y  e.  J  |  x  e.  y }  C_  J ) )
31, 2mpbiri 248 . . . 4  |-  ( J  e.  V  ->  { y  e.  J  |  x  e.  y }  e.  ~P J )
43adantr 481 . . 3  |-  ( ( J  e.  V  /\  x  e.  X )  ->  { y  e.  J  |  x  e.  y }  e.  ~P J
)
5 kqval.2 . . 3  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
64, 5fmptd 6385 . 2  |-  ( J  e.  V  ->  F : X --> ~P J )
7 ffn 6045 . 2  |-  ( F : X --> ~P J  ->  F  Fn  X )
86, 7syl 17 1  |-  ( J  e.  V  ->  F  Fn  X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   {crab 2916    C_ wss 3574   ~Pcpw 4158    |-> cmpt 4729    Fn wfn 5883   -->wf 5884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896
This theorem is referenced by:  kqtopon  21530  kqid  21531  ist0-4  21532  kqfvima  21533  kqsat  21534  kqdisj  21535  kqcldsat  21536  kqopn  21537  kqcld  21538  kqt0lem  21539  isr0  21540  r0cld  21541  regr1lem2  21543  kqreglem1  21544  kqreglem2  21545  kqnrmlem1  21546  kqnrmlem2  21547
  Copyright terms: Public domain W3C validator