| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > istopclsd | Structured version Visualization version Unicode version | ||
| Description: A closure function which satisfies sscls 20860, clsidm 20871, cls0 20884, and clsun 32323 defines a (unique) topology which it is the closure function on. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| istopclsd.b |
|
| istopclsd.f |
|
| istopclsd.e |
|
| istopclsd.i |
|
| istopclsd.z |
|
| istopclsd.u |
|
| istopclsd.j |
|
| Ref | Expression |
|---|---|
| istopclsd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istopclsd.j |
. . . 4
| |
| 2 | istopclsd.f |
. . . . . . . . 9
| |
| 3 | ffn 6045 |
. . . . . . . . 9
| |
| 4 | 2, 3 | syl 17 |
. . . . . . . 8
|
| 5 | 4 | adantr 481 |
. . . . . . 7
|
| 6 | difss 3737 |
. . . . . . . . 9
| |
| 7 | istopclsd.b |
. . . . . . . . . 10
| |
| 8 | elpw2g 4827 |
. . . . . . . . . 10
| |
| 9 | 7, 8 | syl 17 |
. . . . . . . . 9
|
| 10 | 6, 9 | mpbiri 248 |
. . . . . . . 8
|
| 11 | 10 | adantr 481 |
. . . . . . 7
|
| 12 | fnelfp 6441 |
. . . . . . 7
| |
| 13 | 5, 11, 12 | syl2anc 693 |
. . . . . 6
|
| 14 | 13 | bicomd 213 |
. . . . 5
|
| 15 | 14 | rabbidva 3188 |
. . . 4
|
| 16 | 1, 15 | syl5eq 2668 |
. . 3
|
| 17 | istopclsd.e |
. . . . . 6
| |
| 18 | simp1 1061 |
. . . . . . . . 9
| |
| 19 | simp2 1062 |
. . . . . . . . 9
| |
| 20 | simp3 1063 |
. . . . . . . . . 10
| |
| 21 | 20, 19 | sstrd 3613 |
. . . . . . . . 9
|
| 22 | istopclsd.u |
. . . . . . . . 9
| |
| 23 | 18, 19, 21, 22 | syl3anc 1326 |
. . . . . . . 8
|
| 24 | ssequn2 3786 |
. . . . . . . . . . 11
| |
| 25 | 24 | biimpi 206 |
. . . . . . . . . 10
|
| 26 | 25 | 3ad2ant3 1084 |
. . . . . . . . 9
|
| 27 | 26 | fveq2d 6195 |
. . . . . . . 8
|
| 28 | 23, 27 | eqtr3d 2658 |
. . . . . . 7
|
| 29 | ssequn2 3786 |
. . . . . . 7
| |
| 30 | 28, 29 | sylibr 224 |
. . . . . 6
|
| 31 | istopclsd.i |
. . . . . 6
| |
| 32 | 7, 2, 17, 30, 31 | ismrcd1 37261 |
. . . . 5
|
| 33 | istopclsd.z |
. . . . . 6
| |
| 34 | 0elpw 4834 |
. . . . . . 7
| |
| 35 | fnelfp 6441 |
. . . . . . 7
| |
| 36 | 4, 34, 35 | sylancl 694 |
. . . . . 6
|
| 37 | 33, 36 | mpbird 247 |
. . . . 5
|
| 38 | simp1 1061 |
. . . . . . . 8
| |
| 39 | inss1 3833 |
. . . . . . . . . . . . 13
| |
| 40 | dmss 5323 |
. . . . . . . . . . . . 13
| |
| 41 | 39, 40 | ax-mp 5 |
. . . . . . . . . . . 12
|
| 42 | fdm 6051 |
. . . . . . . . . . . . 13
| |
| 43 | 2, 42 | syl 17 |
. . . . . . . . . . . 12
|
| 44 | 41, 43 | syl5sseq 3653 |
. . . . . . . . . . 11
|
| 45 | 44 | 3ad2ant1 1082 |
. . . . . . . . . 10
|
| 46 | simp2 1062 |
. . . . . . . . . 10
| |
| 47 | 45, 46 | sseldd 3604 |
. . . . . . . . 9
|
| 48 | 47 | elpwid 4170 |
. . . . . . . 8
|
| 49 | simp3 1063 |
. . . . . . . . . 10
| |
| 50 | 45, 49 | sseldd 3604 |
. . . . . . . . 9
|
| 51 | 50 | elpwid 4170 |
. . . . . . . 8
|
| 52 | 38, 48, 51, 22 | syl3anc 1326 |
. . . . . . 7
|
| 53 | 4 | 3ad2ant1 1082 |
. . . . . . . . . 10
|
| 54 | fnelfp 6441 |
. . . . . . . . . 10
| |
| 55 | 53, 47, 54 | syl2anc 693 |
. . . . . . . . 9
|
| 56 | 46, 55 | mpbid 222 |
. . . . . . . 8
|
| 57 | fnelfp 6441 |
. . . . . . . . . 10
| |
| 58 | 53, 50, 57 | syl2anc 693 |
. . . . . . . . 9
|
| 59 | 49, 58 | mpbid 222 |
. . . . . . . 8
|
| 60 | 56, 59 | uneq12d 3768 |
. . . . . . 7
|
| 61 | 52, 60 | eqtrd 2656 |
. . . . . 6
|
| 62 | 48, 51 | unssd 3789 |
. . . . . . . 8
|
| 63 | vex 3203 |
. . . . . . . . . 10
| |
| 64 | vex 3203 |
. . . . . . . . . 10
| |
| 65 | 63, 64 | unex 6956 |
. . . . . . . . 9
|
| 66 | 65 | elpw 4164 |
. . . . . . . 8
|
| 67 | 62, 66 | sylibr 224 |
. . . . . . 7
|
| 68 | fnelfp 6441 |
. . . . . . 7
| |
| 69 | 53, 67, 68 | syl2anc 693 |
. . . . . 6
|
| 70 | 61, 69 | mpbird 247 |
. . . . 5
|
| 71 | eqid 2622 |
. . . . 5
| |
| 72 | 32, 37, 70, 71 | mretopd 20896 |
. . . 4
|
| 73 | 72 | simpld 475 |
. . 3
|
| 74 | 16, 73 | eqeltrd 2701 |
. 2
|
| 75 | topontop 20718 |
. . . . . 6
| |
| 76 | 74, 75 | syl 17 |
. . . . 5
|
| 77 | eqid 2622 |
. . . . . 6
| |
| 78 | 77 | mrccls 20883 |
. . . . 5
|
| 79 | 76, 78 | syl 17 |
. . . 4
|
| 80 | 72 | simprd 479 |
. . . . . 6
|
| 81 | 16 | fveq2d 6195 |
. . . . . 6
|
| 82 | 80, 81 | eqtr4d 2659 |
. . . . 5
|
| 83 | 82 | fveq2d 6195 |
. . . 4
|
| 84 | 79, 83 | eqtr4d 2659 |
. . 3
|
| 85 | 7, 2, 17, 30, 31 | ismrcd2 37262 |
. . 3
|
| 86 | 84, 85 | eqtr4d 2659 |
. 2
|
| 87 | 74, 86 | jca 554 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-mre 16246 df-mrc 16247 df-top 20699 df-topon 20716 df-cld 20823 df-cls 20825 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |