MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglng Structured version   Visualization version   Unicode version

Theorem tglng 25441
Description: Lines of a Tarski Geometry. This relates to both Definition 4.10 of [Schwabhauser] p. 36. and Definition 6.14 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 28-Mar-2019.)
Hypotheses
Ref Expression
tglng.p  |-  P  =  ( Base `  G
)
tglng.l  |-  L  =  (LineG `  G )
tglng.i  |-  I  =  (Itv `  G )
Assertion
Ref Expression
tglng  |-  ( G  e. TarskiG  ->  L  =  ( x  e.  P , 
y  e.  ( P 
\  { x }
)  |->  { z  e.  P  |  ( z  e.  ( x I y )  \/  x  e.  ( z I y )  \/  y  e.  ( x I z ) ) } ) )
Distinct variable groups:    x, y,
z, G    x, I,
y, z    x, P, y, z
Allowed substitution hints:    L( x, y, z)

Proof of Theorem tglng
Dummy variables  f 
i  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-trkg 25352 . . . 4  |- TarskiG  =  ( (TarskiGC  i^i TarskiGB )  i^i  (TarskiGCB  i^i  {
f  |  [. ( Base `  f )  /  p ]. [. (Itv `  f )  /  i ]. (LineG `  f )  =  ( x  e.  p ,  y  e.  ( p  \  {
x } )  |->  { z  e.  p  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } ) } ) )
2 inss2 3834 . . . . 5  |-  ( (TarskiGC  i^i TarskiGB )  i^i  (TarskiGCB  i^i  { f  | 
[. ( Base `  f
)  /  p ]. [. (Itv `  f )  /  i ]. (LineG `  f )  =  ( x  e.  p ,  y  e.  ( p 
\  { x }
)  |->  { z  e.  p  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } ) } ) )  C_  (TarskiGCB  i^i  { f  |  [. ( Base `  f )  /  p ]. [. (Itv `  f )  /  i ]. (LineG `  f )  =  ( x  e.  p ,  y  e.  ( p  \  {
x } )  |->  { z  e.  p  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } ) } )
3 inss2 3834 . . . . 5  |-  (TarskiGCB  i^i  {
f  |  [. ( Base `  f )  /  p ]. [. (Itv `  f )  /  i ]. (LineG `  f )  =  ( x  e.  p ,  y  e.  ( p  \  {
x } )  |->  { z  e.  p  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } ) } )  C_  { f  |  [. ( Base `  f
)  /  p ]. [. (Itv `  f )  /  i ]. (LineG `  f )  =  ( x  e.  p ,  y  e.  ( p 
\  { x }
)  |->  { z  e.  p  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } ) }
42, 3sstri 3612 . . . 4  |-  ( (TarskiGC  i^i TarskiGB )  i^i  (TarskiGCB  i^i  { f  | 
[. ( Base `  f
)  /  p ]. [. (Itv `  f )  /  i ]. (LineG `  f )  =  ( x  e.  p ,  y  e.  ( p 
\  { x }
)  |->  { z  e.  p  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } ) } ) )  C_  { f  |  [. ( Base `  f )  /  p ]. [. (Itv `  f )  /  i ]. (LineG `  f )  =  ( x  e.  p ,  y  e.  ( p  \  {
x } )  |->  { z  e.  p  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } ) }
51, 4eqsstri 3635 . . 3  |- TarskiG  C_  { f  |  [. ( Base `  f )  /  p ]. [. (Itv `  f
)  /  i ]. (LineG `  f )  =  ( x  e.  p ,  y  e.  (
p  \  { x } )  |->  { z  e.  p  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } ) }
65sseli 3599 . 2  |-  ( G  e. TarskiG  ->  G  e.  {
f  |  [. ( Base `  f )  /  p ]. [. (Itv `  f )  /  i ]. (LineG `  f )  =  ( x  e.  p ,  y  e.  ( p  \  {
x } )  |->  { z  e.  p  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } ) } )
7 tglng.l . . 3  |-  L  =  (LineG `  G )
8 tglng.p . . . . 5  |-  P  =  ( Base `  G
)
9 eqid 2622 . . . . 5  |-  ( dist `  G )  =  (
dist `  G )
10 tglng.i . . . . 5  |-  I  =  (Itv `  G )
118, 9, 10istrkgl 25357 . . . 4  |-  ( G  e.  { f  | 
[. ( Base `  f
)  /  p ]. [. (Itv `  f )  /  i ]. (LineG `  f )  =  ( x  e.  p ,  y  e.  ( p 
\  { x }
)  |->  { z  e.  p  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } ) }  <->  ( G  e. 
_V  /\  (LineG `  G
)  =  ( x  e.  P ,  y  e.  ( P  \  { x } ) 
|->  { z  e.  P  |  ( z  e.  ( x I y )  \/  x  e.  ( z I y )  \/  y  e.  ( x I z ) ) } ) ) )
1211simprbi 480 . . 3  |-  ( G  e.  { f  | 
[. ( Base `  f
)  /  p ]. [. (Itv `  f )  /  i ]. (LineG `  f )  =  ( x  e.  p ,  y  e.  ( p 
\  { x }
)  |->  { z  e.  p  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } ) }  ->  (LineG `  G
)  =  ( x  e.  P ,  y  e.  ( P  \  { x } ) 
|->  { z  e.  P  |  ( z  e.  ( x I y )  \/  x  e.  ( z I y )  \/  y  e.  ( x I z ) ) } ) )
137, 12syl5eq 2668 . 2  |-  ( G  e.  { f  | 
[. ( Base `  f
)  /  p ]. [. (Itv `  f )  /  i ]. (LineG `  f )  =  ( x  e.  p ,  y  e.  ( p 
\  { x }
)  |->  { z  e.  p  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } ) }  ->  L  =  ( x  e.  P ,  y  e.  ( P  \  { x }
)  |->  { z  e.  P  |  ( z  e.  ( x I y )  \/  x  e.  ( z I y )  \/  y  e.  ( x I z ) ) } ) )
146, 13syl 17 1  |-  ( G  e. TarskiG  ->  L  =  ( x  e.  P , 
y  e.  ( P 
\  { x }
)  |->  { z  e.  P  |  ( z  e.  ( x I y )  \/  x  e.  ( z I y )  \/  y  e.  ( x I z ) ) } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ w3o 1036    = wceq 1483    e. wcel 1990   {cab 2608   {crab 2916   _Vcvv 3200   [.wsbc 3435    \ cdif 3571    i^i cin 3573   {csn 4177   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  TarskiGCcstrkgc 25330  TarskiGBcstrkgb 25331  TarskiGCBcstrkgcb 25332  Itvcitv 25335  LineGclng 25336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-trkg 25352
This theorem is referenced by:  tglnfn  25442  tglnunirn  25443  tglngval  25446  tgisline  25522
  Copyright terms: Public domain W3C validator