MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgulm Structured version   Visualization version   Unicode version

Theorem itgulm 24162
Description: A uniform limit of integrals of integrable functions converges to the integral of the limit function. (Contributed by Mario Carneiro, 18-Mar-2015.)
Hypotheses
Ref Expression
itgulm.z  |-  Z  =  ( ZZ>= `  M )
itgulm.m  |-  ( ph  ->  M  e.  ZZ )
itgulm.f  |-  ( ph  ->  F : Z --> L^1 )
itgulm.u  |-  ( ph  ->  F ( ~~> u `  S ) G )
itgulm.s  |-  ( ph  ->  ( vol `  S
)  e.  RR )
Assertion
Ref Expression
itgulm  |-  ( ph  ->  ( k  e.  Z  |->  S. S ( ( F `  k ) `
 x )  _d x )  ~~>  S. S
( G `  x
)  _d x )
Distinct variable groups:    x, k, F    k, G, x    ph, k, x    k, M, x    S, k, x    k, Z, x

Proof of Theorem itgulm
Dummy variables  j  n  r  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgulm.z . . . . 5  |-  Z  =  ( ZZ>= `  M )
2 itgulm.m . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
32adantr 481 . . . . 5  |-  ( (
ph  /\  r  e.  RR+ )  ->  M  e.  ZZ )
4 itgulm.f . . . . . . . 8  |-  ( ph  ->  F : Z --> L^1 )
5 ffn 6045 . . . . . . . 8  |-  ( F : Z --> L^1 
->  F  Fn  Z
)
64, 5syl 17 . . . . . . 7  |-  ( ph  ->  F  Fn  Z )
7 itgulm.u . . . . . . 7  |-  ( ph  ->  F ( ~~> u `  S ) G )
8 ulmf2 24138 . . . . . . 7  |-  ( ( F  Fn  Z  /\  F ( ~~> u `  S ) G )  ->  F : Z --> ( CC  ^m  S ) )
96, 7, 8syl2anc 693 . . . . . 6  |-  ( ph  ->  F : Z --> ( CC 
^m  S ) )
109adantr 481 . . . . 5  |-  ( (
ph  /\  r  e.  RR+ )  ->  F : Z
--> ( CC  ^m  S
) )
11 eqidd 2623 . . . . 5  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  z  e.  S )
)  ->  ( ( F `  n ) `  z )  =  ( ( F `  n
) `  z )
)
12 eqidd 2623 . . . . 5  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  z  e.  S )  ->  ( G `  z )  =  ( G `  z ) )
137adantr 481 . . . . 5  |-  ( (
ph  /\  r  e.  RR+ )  ->  F ( ~~> u `  S ) G )
14 simpr 477 . . . . . 6  |-  ( (
ph  /\  r  e.  RR+ )  ->  r  e.  RR+ )
15 itgulm.s . . . . . . . 8  |-  ( ph  ->  ( vol `  S
)  e.  RR )
1615adantr 481 . . . . . . 7  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( vol `  S )  e.  RR )
17 ulmcl 24135 . . . . . . . . . . . 12  |-  ( F ( ~~> u `  S
) G  ->  G : S --> CC )
18 fdm 6051 . . . . . . . . . . . 12  |-  ( G : S --> CC  ->  dom 
G  =  S )
197, 17, 183syl 18 . . . . . . . . . . 11  |-  ( ph  ->  dom  G  =  S )
201, 2, 4, 7, 15iblulm 24161 . . . . . . . . . . . 12  |-  ( ph  ->  G  e.  L^1 )
21 iblmbf 23534 . . . . . . . . . . . 12  |-  ( G  e.  L^1  ->  G  e. MblFn )
22 mbfdm 23395 . . . . . . . . . . . 12  |-  ( G  e. MblFn  ->  dom  G  e.  dom  vol )
2320, 21, 223syl 18 . . . . . . . . . . 11  |-  ( ph  ->  dom  G  e.  dom  vol )
2419, 23eqeltrrd 2702 . . . . . . . . . 10  |-  ( ph  ->  S  e.  dom  vol )
25 mblss 23299 . . . . . . . . . 10  |-  ( S  e.  dom  vol  ->  S 
C_  RR )
26 ovolge0 23249 . . . . . . . . . 10  |-  ( S 
C_  RR  ->  0  <_ 
( vol* `  S ) )
2724, 25, 263syl 18 . . . . . . . . 9  |-  ( ph  ->  0  <_  ( vol* `  S ) )
28 mblvol 23298 . . . . . . . . . 10  |-  ( S  e.  dom  vol  ->  ( vol `  S )  =  ( vol* `  S ) )
2924, 28syl 17 . . . . . . . . 9  |-  ( ph  ->  ( vol `  S
)  =  ( vol* `  S )
)
3027, 29breqtrrd 4681 . . . . . . . 8  |-  ( ph  ->  0  <_  ( vol `  S ) )
3130adantr 481 . . . . . . 7  |-  ( (
ph  /\  r  e.  RR+ )  ->  0  <_  ( vol `  S ) )
3216, 31ge0p1rpd 11902 . . . . . 6  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( ( vol `  S )  +  1 )  e.  RR+ )
3314, 32rpdivcld 11889 . . . . 5  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( r  /  ( ( vol `  S )  +  1 ) )  e.  RR+ )
341, 3, 10, 11, 12, 13, 33ulmi 24140 . . . 4  |-  ( (
ph  /\  r  e.  RR+ )  ->  E. j  e.  Z  A. n  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) )
351uztrn2 11705 . . . . . . . 8  |-  ( ( j  e.  Z  /\  n  e.  ( ZZ>= `  j ) )  ->  n  e.  Z )
369ffvelrnda 6359 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  Z )  ->  ( F `  n )  e.  ( CC  ^m  S
) )
37 elmapi 7879 . . . . . . . . . . . . . . . 16  |-  ( ( F `  n )  e.  ( CC  ^m  S )  ->  ( F `  n ) : S --> CC )
3836, 37syl 17 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  Z )  ->  ( F `  n ) : S --> CC )
3938ffvelrnda 6359 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  Z )  /\  x  e.  S )  ->  (
( F `  n
) `  x )  e.  CC )
4039adantllr 755 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  n  e.  Z )  /\  x  e.  S
)  ->  ( ( F `  n ) `  x )  e.  CC )
4140adantlrr 757 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  /\  x  e.  S )  ->  ( ( F `  n ) `  x
)  e.  CC )
4238feqmptd 6249 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  Z )  ->  ( F `  n )  =  ( x  e.  S  |->  ( ( F `
 n ) `  x ) ) )
434ffvelrnda 6359 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  Z )  ->  ( F `  n )  e.  L^1 )
4442, 43eqeltrrd 2702 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  Z )  ->  (
x  e.  S  |->  ( ( F `  n
) `  x )
)  e.  L^1 )
4544ad2ant2r 783 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( x  e.  S  |->  ( ( F `  n ) `  x
) )  e.  L^1 )
467, 17syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  G : S --> CC )
4746ffvelrnda 6359 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  S )  ->  ( G `  x )  e.  CC )
4847adantlr 751 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  x  e.  S )  ->  ( G `  x )  e.  CC )
4948adantlr 751 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  /\  x  e.  S )  ->  ( G `  x
)  e.  CC )
5046feqmptd 6249 . . . . . . . . . . . . . 14  |-  ( ph  ->  G  =  ( x  e.  S  |->  ( G `
 x ) ) )
5150, 20eqeltrrd 2702 . . . . . . . . . . . . 13  |-  ( ph  ->  ( x  e.  S  |->  ( G `  x
) )  e.  L^1 )
5251ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( x  e.  S  |->  ( G `  x
) )  e.  L^1 )
5341, 45, 49, 52itgsub 23592 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  ->  S. S ( ( ( F `  n ) `
 x )  -  ( G `  x ) )  _d x  =  ( S. S ( ( F `  n
) `  x )  _d x  -  S. S ( G `  x )  _d x ) )
5453fveq2d 6195 . . . . . . . . . 10  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( abs `  S. S ( ( ( F `  n ) `
 x )  -  ( G `  x ) )  _d x )  =  ( abs `  ( S. S ( ( F `
 n ) `  x )  _d x  -  S. S ( G `  x )  _d x ) ) )
5541, 49subcld 10392 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  /\  x  e.  S )  ->  ( ( ( F `
 n ) `  x )  -  ( G `  x )
)  e.  CC )
5641, 45, 49, 52iblsub 23588 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( x  e.  S  |->  ( ( ( F `
 n ) `  x )  -  ( G `  x )
) )  e.  L^1 )
5755, 56itgcl 23550 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  ->  S. S ( ( ( F `  n ) `
 x )  -  ( G `  x ) )  _d x  e.  CC )
5857abscld 14175 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( abs `  S. S ( ( ( F `  n ) `
 x )  -  ( G `  x ) )  _d x )  e.  RR )
5955abscld 14175 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  /\  x  e.  S )  ->  ( abs `  (
( ( F `  n ) `  x
)  -  ( G `
 x ) ) )  e.  RR )
6055, 56iblabs 23595 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( x  e.  S  |->  ( abs `  (
( ( F `  n ) `  x
)  -  ( G `
 x ) ) ) )  e.  L^1 )
6159, 60itgrecl 23564 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  ->  S. S ( abs `  (
( ( F `  n ) `  x
)  -  ( G `
 x ) ) )  _d x  e.  RR )
62 rpre 11839 . . . . . . . . . . . 12  |-  ( r  e.  RR+  ->  r  e.  RR )
6362ad2antlr 763 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
r  e.  RR )
6455, 56itgabs 23601 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( abs `  S. S ( ( ( F `  n ) `
 x )  -  ( G `  x ) )  _d x )  <_  S. S ( abs `  ( ( ( F `  n
) `  x )  -  ( G `  x ) ) )  _d x )
6533adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( r  /  (
( vol `  S
)  +  1 ) )  e.  RR+ )
6665rpred 11872 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( r  /  (
( vol `  S
)  +  1 ) )  e.  RR )
6715ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( vol `  S
)  e.  RR )
6866, 67remulcld 10070 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( ( r  / 
( ( vol `  S
)  +  1 ) )  x.  ( vol `  S ) )  e.  RR )
69 fconstmpt 5163 . . . . . . . . . . . . . . 15  |-  ( S  X.  { ( r  /  ( ( vol `  S )  +  1 ) ) } )  =  ( x  e.  S  |->  ( r  / 
( ( vol `  S
)  +  1 ) ) )
7024ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  ->  S  e.  dom  vol )
7165rpcnd 11874 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( r  /  (
( vol `  S
)  +  1 ) )  e.  CC )
72 iblconst 23584 . . . . . . . . . . . . . . . 16  |-  ( ( S  e.  dom  vol  /\  ( vol `  S
)  e.  RR  /\  ( r  /  (
( vol `  S
)  +  1 ) )  e.  CC )  ->  ( S  X.  { ( r  / 
( ( vol `  S
)  +  1 ) ) } )  e.  L^1 )
7370, 67, 71, 72syl3anc 1326 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( S  X.  {
( r  /  (
( vol `  S
)  +  1 ) ) } )  e.  L^1 )
7469, 73syl5eqelr 2706 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( x  e.  S  |->  ( r  /  (
( vol `  S
)  +  1 ) ) )  e.  L^1 )
7566adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  /\  x  e.  S )  ->  ( r  /  (
( vol `  S
)  +  1 ) )  e.  RR )
76 simprr 796 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  ->  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) )
77 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  x  ->  (
( F `  n
) `  z )  =  ( ( F `
 n ) `  x ) )
78 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  x  ->  ( G `  z )  =  ( G `  x ) )
7977, 78oveq12d 6668 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  x  ->  (
( ( F `  n ) `  z
)  -  ( G `
 z ) )  =  ( ( ( F `  n ) `
 x )  -  ( G `  x ) ) )
8079fveq2d 6195 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  x  ->  ( abs `  ( ( ( F `  n ) `
 z )  -  ( G `  z ) ) )  =  ( abs `  ( ( ( F `  n
) `  x )  -  ( G `  x ) ) ) )
8180breq1d 4663 . . . . . . . . . . . . . . . . 17  |-  ( z  =  x  ->  (
( abs `  (
( ( F `  n ) `  z
)  -  ( G `
 z ) ) )  <  ( r  /  ( ( vol `  S )  +  1 ) )  <->  ( abs `  ( ( ( F `
 n ) `  x )  -  ( G `  x )
) )  <  (
r  /  ( ( vol `  S )  +  1 ) ) ) )
8281rspccva 3308 . . . . . . . . . . . . . . . 16  |-  ( ( A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) )  /\  x  e.  S )  ->  ( abs `  ( ( ( F `  n ) `
 x )  -  ( G `  x ) ) )  <  (
r  /  ( ( vol `  S )  +  1 ) ) )
8376, 82sylan 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  /\  x  e.  S )  ->  ( abs `  (
( ( F `  n ) `  x
)  -  ( G `
 x ) ) )  <  ( r  /  ( ( vol `  S )  +  1 ) ) )
8459, 75, 83ltled 10185 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  /\  x  e.  S )  ->  ( abs `  (
( ( F `  n ) `  x
)  -  ( G `
 x ) ) )  <_  ( r  /  ( ( vol `  S )  +  1 ) ) )
8560, 74, 59, 75, 84itgle 23576 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  ->  S. S ( abs `  (
( ( F `  n ) `  x
)  -  ( G `
 x ) ) )  _d x  <_  S. S ( r  / 
( ( vol `  S
)  +  1 ) )  _d x )
86 itgconst 23585 . . . . . . . . . . . . . 14  |-  ( ( S  e.  dom  vol  /\  ( vol `  S
)  e.  RR  /\  ( r  /  (
( vol `  S
)  +  1 ) )  e.  CC )  ->  S. S ( r  /  ( ( vol `  S )  +  1 ) )  _d x  =  ( ( r  /  (
( vol `  S
)  +  1 ) )  x.  ( vol `  S ) ) )
8770, 67, 71, 86syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  ->  S. S ( r  / 
( ( vol `  S
)  +  1 ) )  _d x  =  ( ( r  / 
( ( vol `  S
)  +  1 ) )  x.  ( vol `  S ) ) )
8885, 87breqtrd 4679 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  ->  S. S ( abs `  (
( ( F `  n ) `  x
)  -  ( G `
 x ) ) )  _d x  <_ 
( ( r  / 
( ( vol `  S
)  +  1 ) )  x.  ( vol `  S ) ) )
8963recnd 10068 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
r  e.  CC )
9067recnd 10068 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( vol `  S
)  e.  CC )
9132adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( ( vol `  S
)  +  1 )  e.  RR+ )
9291rpcnd 11874 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( ( vol `  S
)  +  1 )  e.  CC )
9391rpne0d 11877 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( ( vol `  S
)  +  1 )  =/=  0 )
9489, 90, 92, 93div23d 10838 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( ( r  x.  ( vol `  S
) )  /  (
( vol `  S
)  +  1 ) )  =  ( ( r  /  ( ( vol `  S )  +  1 ) )  x.  ( vol `  S
) ) )
9567ltp1d 10954 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( vol `  S
)  <  ( ( vol `  S )  +  1 ) )
96 peano2re 10209 . . . . . . . . . . . . . . . . 17  |-  ( ( vol `  S )  e.  RR  ->  (
( vol `  S
)  +  1 )  e.  RR )
9767, 96syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( ( vol `  S
)  +  1 )  e.  RR )
98 rpgt0 11844 . . . . . . . . . . . . . . . . 17  |-  ( r  e.  RR+  ->  0  < 
r )
9998ad2antlr 763 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
0  <  r )
100 ltmul2 10874 . . . . . . . . . . . . . . . 16  |-  ( ( ( vol `  S
)  e.  RR  /\  ( ( vol `  S
)  +  1 )  e.  RR  /\  (
r  e.  RR  /\  0  <  r ) )  ->  ( ( vol `  S )  <  (
( vol `  S
)  +  1 )  <-> 
( r  x.  ( vol `  S ) )  <  ( r  x.  ( ( vol `  S
)  +  1 ) ) ) )
10167, 97, 63, 99, 100syl112anc 1330 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( ( vol `  S
)  <  ( ( vol `  S )  +  1 )  <->  ( r  x.  ( vol `  S
) )  <  (
r  x.  ( ( vol `  S )  +  1 ) ) ) )
10295, 101mpbid 222 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( r  x.  ( vol `  S ) )  <  ( r  x.  ( ( vol `  S
)  +  1 ) ) )
10363, 67remulcld 10070 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( r  x.  ( vol `  S ) )  e.  RR )
104103, 63, 91ltdivmul2d 11924 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( ( ( r  x.  ( vol `  S
) )  /  (
( vol `  S
)  +  1 ) )  <  r  <->  ( r  x.  ( vol `  S
) )  <  (
r  x.  ( ( vol `  S )  +  1 ) ) ) )
105102, 104mpbird 247 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( ( r  x.  ( vol `  S
) )  /  (
( vol `  S
)  +  1 ) )  <  r )
10694, 105eqbrtrrd 4677 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( ( r  / 
( ( vol `  S
)  +  1 ) )  x.  ( vol `  S ) )  < 
r )
10761, 68, 63, 88, 106lelttrd 10195 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  ->  S. S ( abs `  (
( ( F `  n ) `  x
)  -  ( G `
 x ) ) )  _d x  < 
r )
10858, 61, 63, 64, 107lelttrd 10195 . . . . . . . . . 10  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( abs `  S. S ( ( ( F `  n ) `
 x )  -  ( G `  x ) )  _d x )  <  r )
10954, 108eqbrtrrd 4677 . . . . . . . . 9  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( abs `  ( S. S ( ( F `
 n ) `  x )  _d x  -  S. S ( G `  x )  _d x ) )  <  r )
110109expr 643 . . . . . . . 8  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  n  e.  Z )  ->  ( A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) )  ->  ( abs `  ( S. S ( ( F `  n
) `  x )  _d x  -  S. S ( G `  x )  _d x ) )  <  r
) )
11135, 110sylan2 491 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  n  e.  ( ZZ>= `  j ) ) )  ->  ( A. z  e.  S  ( abs `  ( ( ( F `
 n ) `  z )  -  ( G `  z )
) )  <  (
r  /  ( ( vol `  S )  +  1 ) )  ->  ( abs `  ( S. S ( ( F `
 n ) `  x )  _d x  -  S. S ( G `  x )  _d x ) )  <  r ) )
112111anassrs 680 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  j  e.  Z )  /\  n  e.  ( ZZ>=
`  j ) )  ->  ( A. z  e.  S  ( abs `  ( ( ( F `
 n ) `  z )  -  ( G `  z )
) )  <  (
r  /  ( ( vol `  S )  +  1 ) )  ->  ( abs `  ( S. S ( ( F `
 n ) `  x )  _d x  -  S. S ( G `  x )  _d x ) )  <  r ) )
113112ralimdva 2962 . . . . 5  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  j  e.  Z )  ->  ( A. n  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  n ) `
 z )  -  ( G `  z ) ) )  <  (
r  /  ( ( vol `  S )  +  1 ) )  ->  A. n  e.  (
ZZ>= `  j ) ( abs `  ( S. S ( ( F `
 n ) `  x )  _d x  -  S. S ( G `  x )  _d x ) )  <  r ) )
114113reximdva 3017 . . . 4  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( E. j  e.  Z  A. n  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 n ) `  z )  -  ( G `  z )
) )  <  (
r  /  ( ( vol `  S )  +  1 ) )  ->  E. j  e.  Z  A. n  e.  ( ZZ>=
`  j ) ( abs `  ( S. S ( ( F `
 n ) `  x )  _d x  -  S. S ( G `  x )  _d x ) )  <  r ) )
11534, 114mpd 15 . . 3  |-  ( (
ph  /\  r  e.  RR+ )  ->  E. j  e.  Z  A. n  e.  ( ZZ>= `  j )
( abs `  ( S. S ( ( F `
 n ) `  x )  _d x  -  S. S ( G `  x )  _d x ) )  <  r )
116115ralrimiva 2966 . 2  |-  ( ph  ->  A. r  e.  RR+  E. j  e.  Z  A. n  e.  ( ZZ>= `  j ) ( abs `  ( S. S ( ( F `  n
) `  x )  _d x  -  S. S ( G `  x )  _d x ) )  <  r
)
117 fvex 6201 . . . . . 6  |-  ( ZZ>= `  M )  e.  _V
1181, 117eqeltri 2697 . . . . 5  |-  Z  e. 
_V
119118mptex 6486 . . . 4  |-  ( k  e.  Z  |->  S. S
( ( F `  k ) `  x
)  _d x )  e.  _V
120119a1i 11 . . 3  |-  ( ph  ->  ( k  e.  Z  |->  S. S ( ( F `  k ) `
 x )  _d x )  e.  _V )
121 fveq2 6191 . . . . . . . 8  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
122121fveq1d 6193 . . . . . . 7  |-  ( k  =  n  ->  (
( F `  k
) `  x )  =  ( ( F `
 n ) `  x ) )
123122adantr 481 . . . . . 6  |-  ( ( k  =  n  /\  x  e.  S )  ->  ( ( F `  k ) `  x
)  =  ( ( F `  n ) `
 x ) )
124123itgeq2dv 23548 . . . . 5  |-  ( k  =  n  ->  S. S ( ( F `
 k ) `  x )  _d x  =  S. S ( ( F `  n
) `  x )  _d x )
125 eqid 2622 . . . . 5  |-  ( k  e.  Z  |->  S. S
( ( F `  k ) `  x
)  _d x )  =  ( k  e.  Z  |->  S. S ( ( F `  k
) `  x )  _d x )
126 itgex 23537 . . . . 5  |-  S. S
( ( F `  n ) `  x
)  _d x  e. 
_V
127124, 125, 126fvmpt 6282 . . . 4  |-  ( n  e.  Z  ->  (
( k  e.  Z  |->  S. S ( ( F `  k ) `
 x )  _d x ) `  n
)  =  S. S
( ( F `  n ) `  x
)  _d x )
128127adantl 482 . . 3  |-  ( (
ph  /\  n  e.  Z )  ->  (
( k  e.  Z  |->  S. S ( ( F `  k ) `
 x )  _d x ) `  n
)  =  S. S
( ( F `  n ) `  x
)  _d x )
12947, 51itgcl 23550 . . 3  |-  ( ph  ->  S. S ( G `
 x )  _d x  e.  CC )
13039, 44itgcl 23550 . . 3  |-  ( (
ph  /\  n  e.  Z )  ->  S. S ( ( F `
 n ) `  x )  _d x  e.  CC )
1311, 2, 120, 128, 129, 130clim2c 14236 . 2  |-  ( ph  ->  ( ( k  e.  Z  |->  S. S ( ( F `  k
) `  x )  _d x )  ~~>  S. S
( G `  x
)  _d x  <->  A. r  e.  RR+  E. j  e.  Z  A. n  e.  ( ZZ>= `  j )
( abs `  ( S. S ( ( F `
 n ) `  x )  _d x  -  S. S ( G `  x )  _d x ) )  <  r ) )
132116, 131mpbird 247 1  |-  ( ph  ->  ( k  e.  Z  |->  S. S ( ( F `  k ) `
 x )  _d x )  ~~>  S. S
( G `  x
)  _d x )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   {csn 4177   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   dom cdm 5114    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   abscabs 13974    ~~> cli 14215   vol*covol 23231   volcvol 23232  MblFncmbf 23383   L^1cibl 23386   S.citg 23387   ~~> uculm 24130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-cnp 21032  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392  df-0p 23437  df-ulm 24131
This theorem is referenced by:  itgulm2  24163
  Copyright terms: Public domain W3C validator