MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbssp Structured version   Visualization version   Unicode version

Theorem lbssp 19079
Description: The span of a basis is the whole space. (Contributed by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
lbsss.v  |-  V  =  ( Base `  W
)
lbsss.j  |-  J  =  (LBasis `  W )
lbssp.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lbssp  |-  ( B  e.  J  ->  ( N `  B )  =  V )

Proof of Theorem lbssp
Dummy variables  y  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6220 . . . . 5  |-  ( B  e.  (LBasis `  W
)  ->  W  e.  dom LBasis )
2 lbsss.j . . . . 5  |-  J  =  (LBasis `  W )
31, 2eleq2s 2719 . . . 4  |-  ( B  e.  J  ->  W  e.  dom LBasis )
4 lbsss.v . . . . 5  |-  V  =  ( Base `  W
)
5 eqid 2622 . . . . 5  |-  (Scalar `  W )  =  (Scalar `  W )
6 eqid 2622 . . . . 5  |-  ( .s
`  W )  =  ( .s `  W
)
7 eqid 2622 . . . . 5  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
8 lbssp.n . . . . 5  |-  N  =  ( LSpan `  W )
9 eqid 2622 . . . . 5  |-  ( 0g
`  (Scalar `  W )
)  =  ( 0g
`  (Scalar `  W )
)
104, 5, 6, 7, 2, 8, 9islbs 19076 . . . 4  |-  ( W  e.  dom LBasis  ->  ( B  e.  J  <->  ( B  C_  V  /\  ( N `
 B )  =  V  /\  A. x  e.  B  A. y  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } )  -.  (
y ( .s `  W ) x )  e.  ( N `  ( B  \  { x } ) ) ) ) )
113, 10syl 17 . . 3  |-  ( B  e.  J  ->  ( B  e.  J  <->  ( B  C_  V  /\  ( N `
 B )  =  V  /\  A. x  e.  B  A. y  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } )  -.  (
y ( .s `  W ) x )  e.  ( N `  ( B  \  { x } ) ) ) ) )
1211ibi 256 . 2  |-  ( B  e.  J  ->  ( B  C_  V  /\  ( N `  B )  =  V  /\  A. x  e.  B  A. y  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } )  -.  (
y ( .s `  W ) x )  e.  ( N `  ( B  \  { x } ) ) ) )
1312simp2d 1074 1  |-  ( B  e.  J  ->  ( N `  B )  =  V )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    \ cdif 3571    C_ wss 3574   {csn 4177   dom cdm 5114   ` cfv 5888  (class class class)co 6650   Basecbs 15857  Scalarcsca 15944   .scvsca 15945   0gc0g 16100   LSpanclspn 18971  LBasisclbs 19074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-lbs 19075
This theorem is referenced by:  islbs2  19154  islbs3  19155  frlmup3  20139  frlmup4  20140  lmimlbs  20175  lbslcic  20180  lindsdom  33403  matunitlindflem2  33406  aacllem  42547
  Copyright terms: Public domain W3C validator