MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leordtvallem1 Structured version   Visualization version   Unicode version

Theorem leordtvallem1 21014
Description: Lemma for leordtval 21017. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
leordtval.1  |-  A  =  ran  ( x  e. 
RR*  |->  ( x (,] +oo ) )
Assertion
Ref Expression
leordtvallem1  |-  A  =  ran  ( x  e. 
RR*  |->  { y  e. 
RR*  |  -.  y  <_  x } )
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)

Proof of Theorem leordtvallem1
StepHypRef Expression
1 leordtval.1 . 2  |-  A  =  ran  ( x  e. 
RR*  |->  ( x (,] +oo ) )
2 iocssxr 12257 . . . . . 6  |-  ( x (,] +oo )  C_  RR*
3 sseqin2 3817 . . . . . 6  |-  ( ( x (,] +oo )  C_ 
RR* 
<->  ( RR*  i^i  (
x (,] +oo )
)  =  ( x (,] +oo ) )
42, 3mpbi 220 . . . . 5  |-  ( RR*  i^i  ( x (,] +oo ) )  =  ( x (,] +oo )
5 simpl 473 . . . . . . . 8  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  x  e.  RR* )
6 pnfxr 10092 . . . . . . . 8  |- +oo  e.  RR*
7 elioc1 12217 . . . . . . . 8  |-  ( ( x  e.  RR*  /\ +oo  e.  RR* )  ->  (
y  e.  ( x (,] +oo )  <->  ( y  e.  RR*  /\  x  < 
y  /\  y  <_ +oo ) ) )
85, 6, 7sylancl 694 . . . . . . 7  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
y  e.  ( x (,] +oo )  <->  ( y  e.  RR*  /\  x  < 
y  /\  y  <_ +oo ) ) )
9 simpr 477 . . . . . . . . . 10  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  y  e.  RR* )
10 pnfge 11964 . . . . . . . . . 10  |-  ( y  e.  RR*  ->  y  <_ +oo )
119, 10jccir 562 . . . . . . . . 9  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
y  e.  RR*  /\  y  <_ +oo ) )
1211biantrurd 529 . . . . . . . 8  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
x  <  y  <->  ( (
y  e.  RR*  /\  y  <_ +oo )  /\  x  <  y ) ) )
13 3anan32 1050 . . . . . . . 8  |-  ( ( y  e.  RR*  /\  x  <  y  /\  y  <_ +oo )  <->  ( ( y  e.  RR*  /\  y  <_ +oo )  /\  x  <  y ) )
1412, 13syl6bbr 278 . . . . . . 7  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
x  <  y  <->  ( y  e.  RR*  /\  x  < 
y  /\  y  <_ +oo ) ) )
15 xrltnle 10105 . . . . . . 7  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
x  <  y  <->  -.  y  <_  x ) )
168, 14, 153bitr2d 296 . . . . . 6  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
y  e.  ( x (,] +oo )  <->  -.  y  <_  x ) )
1716rabbi2dva 3821 . . . . 5  |-  ( x  e.  RR*  ->  ( RR*  i^i  ( x (,] +oo ) )  =  {
y  e.  RR*  |  -.  y  <_  x } )
184, 17syl5eqr 2670 . . . 4  |-  ( x  e.  RR*  ->  ( x (,] +oo )  =  { y  e.  RR*  |  -.  y  <_  x } )
1918mpteq2ia 4740 . . 3  |-  ( x  e.  RR*  |->  ( x (,] +oo ) )  =  ( x  e. 
RR*  |->  { y  e. 
RR*  |  -.  y  <_  x } )
2019rneqi 5352 . 2  |-  ran  (
x  e.  RR*  |->  ( x (,] +oo ) )  =  ran  ( x  e.  RR*  |->  { y  e.  RR*  |  -.  y  <_  x } )
211, 20eqtri 2644 1  |-  A  =  ran  ( x  e. 
RR*  |->  { y  e. 
RR*  |  -.  y  <_  x } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {crab 2916    i^i cin 3573    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   ran crn 5115  (class class class)co 6650   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075   (,]cioc 12176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-ioc 12180
This theorem is referenced by:  leordtval2  21016  leordtval  21017
  Copyright terms: Public domain W3C validator