Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpocat Structured version   Visualization version   Unicode version

Theorem lhpocat 35303
Description: The orthocomplement of a co-atom is an atom. (Contributed by NM, 9-Feb-2013.)
Hypotheses
Ref Expression
lhpocat.o  |-  ._|_  =  ( oc `  K )
lhpocat.a  |-  A  =  ( Atoms `  K )
lhpocat.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
lhpocat  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  ._|_  `  W )  e.  A )

Proof of Theorem lhpocat
StepHypRef Expression
1 simpr 477 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  W  e.  H )
2 eqid 2622 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
3 lhpocat.h . . . 4  |-  H  =  ( LHyp `  K
)
42, 3lhpbase 35284 . . 3  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
5 lhpocat.o . . . 4  |-  ._|_  =  ( oc `  K )
6 lhpocat.a . . . 4  |-  A  =  ( Atoms `  K )
72, 5, 6, 3lhpoc 35300 . . 3  |-  ( ( K  e.  HL  /\  W  e.  ( Base `  K ) )  -> 
( W  e.  H  <->  ( 
._|_  `  W )  e.  A ) )
84, 7sylan2 491 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( W  e.  H  <->  ( 
._|_  `  W )  e.  A ) )
91, 8mpbid 222 1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  ._|_  `  W )  e.  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   ` cfv 5888   Basecbs 15857   occoc 15949   Atomscatm 34550   HLchlt 34637   LHypclh 35270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-p0 17039  df-p1 17040  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-hlat 34638  df-lhyp 35274
This theorem is referenced by:  lhpocnel  35304  lhpmod2i2  35324  lhpmod6i1  35325  dihat  36624
  Copyright terms: Public domain W3C validator