Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindslinindimp2lem1 Structured version   Visualization version   Unicode version

Theorem lindslinindimp2lem1 42247
Description: Lemma 1 for lindslinindsimp2 42252. (Contributed by AV, 25-Apr-2019.)
Hypotheses
Ref Expression
lindslinind.r  |-  R  =  (Scalar `  M )
lindslinind.b  |-  B  =  ( Base `  R
)
lindslinind.0  |-  .0.  =  ( 0g `  R )
lindslinind.z  |-  Z  =  ( 0g `  M
)
lindslinind.y  |-  Y  =  ( ( invg `  R ) `  (
f `  x )
)
lindslinind.g  |-  G  =  ( f  |`  ( S  \  { x }
) )
Assertion
Ref Expression
lindslinindimp2lem1  |-  ( ( ( S  e.  V  /\  M  e.  LMod )  /\  ( S  C_  ( Base `  M )  /\  x  e.  S  /\  f  e.  ( B  ^m  S ) ) )  ->  Y  e.  B )
Distinct variable groups:    B, f    f, M    R, f, x    S, f, x    f, Z    .0. , f, x
Allowed substitution hints:    B( x)    G( x, f)    M( x)    V( x, f)    Y( x, f)    Z( x)

Proof of Theorem lindslinindimp2lem1
StepHypRef Expression
1 lindslinind.y . 2  |-  Y  =  ( ( invg `  R ) `  (
f `  x )
)
2 lindslinind.r . . . . 5  |-  R  =  (Scalar `  M )
32lmodfgrp 18872 . . . 4  |-  ( M  e.  LMod  ->  R  e. 
Grp )
43adantl 482 . . 3  |-  ( ( S  e.  V  /\  M  e.  LMod )  ->  R  e.  Grp )
5 elmapi 7879 . . . . . 6  |-  ( f  e.  ( B  ^m  S )  ->  f : S --> B )
6 ffvelrn 6357 . . . . . . . 8  |-  ( ( f : S --> B  /\  x  e.  S )  ->  ( f `  x
)  e.  B )
76a1d 25 . . . . . . 7  |-  ( ( f : S --> B  /\  x  e.  S )  ->  ( S  C_  ( Base `  M )  -> 
( f `  x
)  e.  B ) )
87ex 450 . . . . . 6  |-  ( f : S --> B  -> 
( x  e.  S  ->  ( S  C_  ( Base `  M )  -> 
( f `  x
)  e.  B ) ) )
95, 8syl 17 . . . . 5  |-  ( f  e.  ( B  ^m  S )  ->  (
x  e.  S  -> 
( S  C_  ( Base `  M )  -> 
( f `  x
)  e.  B ) ) )
109com13 88 . . . 4  |-  ( S 
C_  ( Base `  M
)  ->  ( x  e.  S  ->  ( f  e.  ( B  ^m  S )  ->  (
f `  x )  e.  B ) ) )
11103imp 1256 . . 3  |-  ( ( S  C_  ( Base `  M )  /\  x  e.  S  /\  f  e.  ( B  ^m  S
) )  ->  (
f `  x )  e.  B )
12 lindslinind.b . . . 4  |-  B  =  ( Base `  R
)
13 eqid 2622 . . . 4  |-  ( invg `  R )  =  ( invg `  R )
1412, 13grpinvcl 17467 . . 3  |-  ( ( R  e.  Grp  /\  ( f `  x
)  e.  B )  ->  ( ( invg `  R ) `
 ( f `  x ) )  e.  B )
154, 11, 14syl2an 494 . 2  |-  ( ( ( S  e.  V  /\  M  e.  LMod )  /\  ( S  C_  ( Base `  M )  /\  x  e.  S  /\  f  e.  ( B  ^m  S ) ) )  ->  ( ( invg `  R ) `
 ( f `  x ) )  e.  B )
161, 15syl5eqel 2705 1  |-  ( ( ( S  e.  V  /\  M  e.  LMod )  /\  ( S  C_  ( Base `  M )  /\  x  e.  S  /\  f  e.  ( B  ^m  S ) ) )  ->  Y  e.  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    \ cdif 3571    C_ wss 3574   {csn 4177    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   Basecbs 15857  Scalarcsca 15944   0gc0g 16100   Grpcgrp 17422   invgcminusg 17423   LModclmod 18863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-ring 18549  df-lmod 18865
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator