MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumvsmul Structured version   Visualization version   Unicode version

Theorem gsumvsmul 18927
Description: Pull a scalar multiplication out of a sum of vectors. This theorem properly generalizes gsummulc2 18607, since every ring is a left module over itself. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) (Revised by AV, 10-Jul-2019.)
Hypotheses
Ref Expression
gsumvsmul.b  |-  B  =  ( Base `  R
)
gsumvsmul.s  |-  S  =  (Scalar `  R )
gsumvsmul.k  |-  K  =  ( Base `  S
)
gsumvsmul.z  |-  .0.  =  ( 0g `  R )
gsumvsmul.p  |-  .+  =  ( +g  `  R )
gsumvsmul.t  |-  .x.  =  ( .s `  R )
gsumvsmul.r  |-  ( ph  ->  R  e.  LMod )
gsumvsmul.a  |-  ( ph  ->  A  e.  V )
gsumvsmul.x  |-  ( ph  ->  X  e.  K )
gsumvsmul.y  |-  ( (
ph  /\  k  e.  A )  ->  Y  e.  B )
gsumvsmul.n  |-  ( ph  ->  ( k  e.  A  |->  Y ) finSupp  .0.  )
Assertion
Ref Expression
gsumvsmul  |-  ( ph  ->  ( R  gsumg  ( k  e.  A  |->  ( X  .x.  Y
) ) )  =  ( X  .x.  ( R  gsumg  ( k  e.  A  |->  Y ) ) ) )
Distinct variable groups:    A, k    B, k    ph, k    .x. , k    S, k    k, K    k, X    .0. , k
Allowed substitution hints:    .+ ( k)    R( k)    V( k)    Y( k)

Proof of Theorem gsumvsmul
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 gsumvsmul.b . 2  |-  B  =  ( Base `  R
)
2 gsumvsmul.z . 2  |-  .0.  =  ( 0g `  R )
3 gsumvsmul.r . . 3  |-  ( ph  ->  R  e.  LMod )
4 lmodcmn 18911 . . 3  |-  ( R  e.  LMod  ->  R  e. CMnd
)
53, 4syl 17 . 2  |-  ( ph  ->  R  e. CMnd )
6 cmnmnd 18208 . . 3  |-  ( R  e. CMnd  ->  R  e.  Mnd )
75, 6syl 17 . 2  |-  ( ph  ->  R  e.  Mnd )
8 gsumvsmul.a . 2  |-  ( ph  ->  A  e.  V )
9 gsumvsmul.x . . . 4  |-  ( ph  ->  X  e.  K )
10 gsumvsmul.s . . . . 5  |-  S  =  (Scalar `  R )
11 gsumvsmul.t . . . . 5  |-  .x.  =  ( .s `  R )
12 gsumvsmul.k . . . . 5  |-  K  =  ( Base `  S
)
131, 10, 11, 12lmodvsghm 18924 . . . 4  |-  ( ( R  e.  LMod  /\  X  e.  K )  ->  (
y  e.  B  |->  ( X  .x.  y ) )  e.  ( R 
GrpHom  R ) )
143, 9, 13syl2anc 693 . . 3  |-  ( ph  ->  ( y  e.  B  |->  ( X  .x.  y
) )  e.  ( R  GrpHom  R ) )
15 ghmmhm 17670 . . 3  |-  ( ( y  e.  B  |->  ( X  .x.  y ) )  e.  ( R 
GrpHom  R )  ->  (
y  e.  B  |->  ( X  .x.  y ) )  e.  ( R MndHom  R ) )
1614, 15syl 17 . 2  |-  ( ph  ->  ( y  e.  B  |->  ( X  .x.  y
) )  e.  ( R MndHom  R ) )
17 gsumvsmul.y . 2  |-  ( (
ph  /\  k  e.  A )  ->  Y  e.  B )
18 gsumvsmul.n . 2  |-  ( ph  ->  ( k  e.  A  |->  Y ) finSupp  .0.  )
19 oveq2 6658 . 2  |-  ( y  =  Y  ->  ( X  .x.  y )  =  ( X  .x.  Y
) )
20 oveq2 6658 . 2  |-  ( y  =  ( R  gsumg  ( k  e.  A  |->  Y ) )  ->  ( X  .x.  y )  =  ( X  .x.  ( R 
gsumg  ( k  e.  A  |->  Y ) ) ) )
211, 2, 5, 7, 8, 16, 17, 18, 19, 20gsummhm2 18339 1  |-  ( ph  ->  ( R  gsumg  ( k  e.  A  |->  ( X  .x.  Y
) ) )  =  ( X  .x.  ( R  gsumg  ( k  e.  A  |->  Y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   finSupp cfsupp 8275   Basecbs 15857   +g cplusg 15941  Scalarcsca 15944   .scvsca 15945   0gc0g 16100    gsumg cgsu 16101   Mndcmnd 17294   MndHom cmhm 17333    GrpHom cghm 17657  CMndccmn 18193   LModclmod 18863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865
This theorem is referenced by:  frlmup1  20137  lincscm  42219  lincresunit3lem2  42269
  Copyright terms: Public domain W3C validator