![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodvacl | Structured version Visualization version Unicode version |
Description: Closure of vector addition for a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodvacl.v |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lmodvacl.a |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
lmodvacl |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodgrp 18870 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | lmodvacl.v |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | lmodvacl.a |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | grpcl 17430 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | syl3an1 1359 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-lmod 18865 |
This theorem is referenced by: lmodcom 18909 lmodvsghm 18924 lss1 18939 lspprabs 19095 lspabs2 19120 lspabs3 19121 lspfixed 19128 lspexch 19129 lspsolvlem 19142 ipdir 19984 ipdi 19985 ip2di 19986 ocvlss 20016 frlmphl 20120 frlmup1 20137 nmparlem 23038 minveclem2 23197 lsatfixedN 34296 lfl0f 34356 lfladdcl 34358 lflnegcl 34362 lflvscl 34364 lkrlss 34382 lshpkrlem5 34401 lshpkrlem6 34402 dvh3dim2 36737 dvh3dim3N 36738 lcfrlem17 36848 lcfrlem19 36850 lcfrlem20 36851 lcfrlem23 36854 baerlem3lem1 36996 baerlem5alem1 36997 baerlem5blem1 36998 baerlem5alem2 37000 baerlem5blem2 37001 mapdindp0 37008 mapdindp2 37010 mapdindp4 37012 mapdh6lem2N 37023 mapdh6aN 37024 mapdh6dN 37028 mapdh6eN 37029 mapdh6hN 37032 hdmap1l6lem2 37098 hdmap1l6a 37099 hdmap1l6d 37103 hdmap1l6e 37104 hdmap1l6h 37107 hdmap11lem1 37133 hdmap11lem2 37134 hdmapneg 37138 hdmaprnlem3N 37142 hdmaprnlem3uN 37143 hdmaprnlem6N 37146 hdmaprnlem7N 37147 hdmaprnlem9N 37149 hdmaprnlem3eN 37150 hdmap14lem10 37169 hdmapinvlem3 37212 hdmapinvlem4 37213 hdmapglem7b 37220 hlhilphllem 37251 lincsumcl 42220 |
Copyright terms: Public domain | W3C validator |