| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lo1eq | Structured version Visualization version Unicode version | ||
| Description: Two functions that are eventually equal to one another are eventually bounded if one of them is. (Contributed by Mario Carneiro, 26-May-2016.) |
| Ref | Expression |
|---|---|
| lo1eq.1 |
|
| lo1eq.2 |
|
| lo1eq.3 |
|
| lo1eq.4 |
|
| Ref | Expression |
|---|---|
| lo1eq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lo1dm 14250 |
. . 3
| |
| 2 | eqid 2622 |
. . . . 5
| |
| 3 | lo1eq.1 |
. . . . 5
| |
| 4 | 2, 3 | dmmptd 6024 |
. . . 4
|
| 5 | 4 | sseq1d 3632 |
. . 3
|
| 6 | 1, 5 | syl5ib 234 |
. 2
|
| 7 | lo1dm 14250 |
. . 3
| |
| 8 | eqid 2622 |
. . . . 5
| |
| 9 | lo1eq.2 |
. . . . 5
| |
| 10 | 8, 9 | dmmptd 6024 |
. . . 4
|
| 11 | 10 | sseq1d 3632 |
. . 3
|
| 12 | 7, 11 | syl5ib 234 |
. 2
|
| 13 | simpr 477 |
. . . . . . . . . . . . . 14
| |
| 14 | elin 3796 |
. . . . . . . . . . . . . 14
| |
| 15 | 13, 14 | sylib 208 |
. . . . . . . . . . . . 13
|
| 16 | 15 | simpld 475 |
. . . . . . . . . . . 12
|
| 17 | 15 | simprd 479 |
. . . . . . . . . . . . . 14
|
| 18 | lo1eq.3 |
. . . . . . . . . . . . . . . 16
| |
| 19 | elicopnf 12269 |
. . . . . . . . . . . . . . . 16
| |
| 20 | 18, 19 | syl 17 |
. . . . . . . . . . . . . . 15
|
| 21 | 20 | biimpa 501 |
. . . . . . . . . . . . . 14
|
| 22 | 17, 21 | syldan 487 |
. . . . . . . . . . . . 13
|
| 23 | 22 | simprd 479 |
. . . . . . . . . . . 12
|
| 24 | 16, 23 | jca 554 |
. . . . . . . . . . 11
|
| 25 | lo1eq.4 |
. . . . . . . . . . 11
| |
| 26 | 24, 25 | syldan 487 |
. . . . . . . . . 10
|
| 27 | 26 | mpteq2dva 4744 |
. . . . . . . . 9
|
| 28 | inss1 3833 |
. . . . . . . . . 10
| |
| 29 | resmpt 5449 |
. . . . . . . . . 10
| |
| 30 | 28, 29 | ax-mp 5 |
. . . . . . . . 9
|
| 31 | resmpt 5449 |
. . . . . . . . . 10
| |
| 32 | 28, 31 | ax-mp 5 |
. . . . . . . . 9
|
| 33 | 27, 30, 32 | 3eqtr4g 2681 |
. . . . . . . 8
|
| 34 | resres 5409 |
. . . . . . . 8
| |
| 35 | resres 5409 |
. . . . . . . 8
| |
| 36 | 33, 34, 35 | 3eqtr4g 2681 |
. . . . . . 7
|
| 37 | ssid 3624 |
. . . . . . . 8
| |
| 38 | resmpt 5449 |
. . . . . . . 8
| |
| 39 | reseq1 5390 |
. . . . . . . 8
| |
| 40 | 37, 38, 39 | mp2b 10 |
. . . . . . 7
|
| 41 | resmpt 5449 |
. . . . . . . 8
| |
| 42 | reseq1 5390 |
. . . . . . . 8
| |
| 43 | 37, 41, 42 | mp2b 10 |
. . . . . . 7
|
| 44 | 36, 40, 43 | 3eqtr3g 2679 |
. . . . . 6
|
| 45 | 44 | eleq1d 2686 |
. . . . 5
|
| 46 | 45 | adantr 481 |
. . . 4
|
| 47 | 3, 2 | fmptd 6385 |
. . . . . 6
|
| 48 | 47 | adantr 481 |
. . . . 5
|
| 49 | simpr 477 |
. . . . 5
| |
| 50 | 18 | adantr 481 |
. . . . 5
|
| 51 | 48, 49, 50 | lo1resb 14295 |
. . . 4
|
| 52 | 9, 8 | fmptd 6385 |
. . . . . 6
|
| 53 | 52 | adantr 481 |
. . . . 5
|
| 54 | 53, 49, 50 | lo1resb 14295 |
. . . 4
|
| 55 | 46, 51, 54 | 3bitr4d 300 |
. . 3
|
| 56 | 55 | ex 450 |
. 2
|
| 57 | 6, 12, 56 | pm5.21ndd 369 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-pre-lttri 10010 ax-pre-lttrn 10011 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-ico 12181 df-lo1 14222 |
| This theorem is referenced by: o1eq 14301 |
| Copyright terms: Public domain | W3C validator |