MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimeq Structured version   Visualization version   Unicode version

Theorem rlimeq 14300
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Mario Carneiro, 16-Sep-2014.)
Hypotheses
Ref Expression
rlimeq.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
rlimeq.2  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
rlimeq.3  |-  ( ph  ->  D  e.  RR )
rlimeq.4  |-  ( (
ph  /\  ( x  e.  A  /\  D  <_  x ) )  ->  B  =  C )
Assertion
Ref Expression
rlimeq  |-  ( ph  ->  ( ( x  e.  A  |->  B )  ~~> r  E  <->  ( x  e.  A  |->  C )  ~~> r  E ) )
Distinct variable groups:    x, A    x, D    ph, x
Allowed substitution hints:    B( x)    C( x)    E( x)

Proof of Theorem rlimeq
StepHypRef Expression
1 rlimss 14233 . . 3  |-  ( ( x  e.  A  |->  B )  ~~> r  E  ->  dom  ( x  e.  A  |->  B )  C_  RR )
2 eqid 2622 . . . . 5  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
3 rlimeq.1 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
42, 3dmmptd 6024 . . . 4  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  =  A )
54sseq1d 3632 . . 3  |-  ( ph  ->  ( dom  ( x  e.  A  |->  B ) 
C_  RR  <->  A  C_  RR ) )
61, 5syl5ib 234 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  B )  ~~> r  E  ->  A  C_  RR )
)
7 rlimss 14233 . . 3  |-  ( ( x  e.  A  |->  C )  ~~> r  E  ->  dom  ( x  e.  A  |->  C )  C_  RR )
8 eqid 2622 . . . . 5  |-  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C )
9 rlimeq.2 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
108, 9dmmptd 6024 . . . 4  |-  ( ph  ->  dom  ( x  e.  A  |->  C )  =  A )
1110sseq1d 3632 . . 3  |-  ( ph  ->  ( dom  ( x  e.  A  |->  C ) 
C_  RR  <->  A  C_  RR ) )
127, 11syl5ib 234 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  C )  ~~> r  E  ->  A  C_  RR )
)
13 simpr 477 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( A  i^i  ( D [,) +oo ) ) )  ->  x  e.  ( A  i^i  ( D [,) +oo ) ) )
14 elin 3796 . . . . . . . . . . . . . 14  |-  ( x  e.  ( A  i^i  ( D [,) +oo )
)  <->  ( x  e.  A  /\  x  e.  ( D [,) +oo ) ) )
1513, 14sylib 208 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A  i^i  ( D [,) +oo ) ) )  ->  ( x  e.  A  /\  x  e.  ( D [,) +oo ) ) )
1615simpld 475 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A  i^i  ( D [,) +oo ) ) )  ->  x  e.  A )
1715simprd 479 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( A  i^i  ( D [,) +oo ) ) )  ->  x  e.  ( D [,) +oo )
)
18 rlimeq.3 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  D  e.  RR )
19 elicopnf 12269 . . . . . . . . . . . . . . . 16  |-  ( D  e.  RR  ->  (
x  e.  ( D [,) +oo )  <->  ( x  e.  RR  /\  D  <_  x ) ) )
2018, 19syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( x  e.  ( D [,) +oo )  <->  ( x  e.  RR  /\  D  <_  x ) ) )
2120biimpa 501 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( D [,) +oo )
)  ->  ( x  e.  RR  /\  D  <_  x ) )
2217, 21syldan 487 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A  i^i  ( D [,) +oo ) ) )  ->  ( x  e.  RR  /\  D  <_  x ) )
2322simprd 479 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A  i^i  ( D [,) +oo ) ) )  ->  D  <_  x )
2416, 23jca 554 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A  i^i  ( D [,) +oo ) ) )  ->  ( x  e.  A  /\  D  <_  x ) )
25 rlimeq.4 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  A  /\  D  <_  x ) )  ->  B  =  C )
2624, 25syldan 487 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A  i^i  ( D [,) +oo ) ) )  ->  B  =  C )
2726mpteq2dva 4744 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( A  i^i  ( D [,) +oo ) ) 
|->  B )  =  ( x  e.  ( A  i^i  ( D [,) +oo ) )  |->  C ) )
28 inss1 3833 . . . . . . . . . 10  |-  ( A  i^i  ( D [,) +oo ) )  C_  A
29 resmpt 5449 . . . . . . . . . 10  |-  ( ( A  i^i  ( D [,) +oo ) ) 
C_  A  ->  (
( x  e.  A  |->  B )  |`  ( A  i^i  ( D [,) +oo ) ) )  =  ( x  e.  ( A  i^i  ( D [,) +oo ) ) 
|->  B ) )
3028, 29ax-mp 5 . . . . . . . . 9  |-  ( ( x  e.  A  |->  B )  |`  ( A  i^i  ( D [,) +oo ) ) )  =  ( x  e.  ( A  i^i  ( D [,) +oo ) ) 
|->  B )
31 resmpt 5449 . . . . . . . . . 10  |-  ( ( A  i^i  ( D [,) +oo ) ) 
C_  A  ->  (
( x  e.  A  |->  C )  |`  ( A  i^i  ( D [,) +oo ) ) )  =  ( x  e.  ( A  i^i  ( D [,) +oo ) ) 
|->  C ) )
3228, 31ax-mp 5 . . . . . . . . 9  |-  ( ( x  e.  A  |->  C )  |`  ( A  i^i  ( D [,) +oo ) ) )  =  ( x  e.  ( A  i^i  ( D [,) +oo ) ) 
|->  C )
3327, 30, 323eqtr4g 2681 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  A  |->  B )  |`  ( A  i^i  ( D [,) +oo ) ) )  =  ( ( x  e.  A  |->  C )  |`  ( A  i^i  ( D [,) +oo ) ) ) )
34 resres 5409 . . . . . . . 8  |-  ( ( ( x  e.  A  |->  B )  |`  A )  |`  ( D [,) +oo ) )  =  ( ( x  e.  A  |->  B )  |`  ( A  i^i  ( D [,) +oo ) ) )
35 resres 5409 . . . . . . . 8  |-  ( ( ( x  e.  A  |->  C )  |`  A )  |`  ( D [,) +oo ) )  =  ( ( x  e.  A  |->  C )  |`  ( A  i^i  ( D [,) +oo ) ) )
3633, 34, 353eqtr4g 2681 . . . . . . 7  |-  ( ph  ->  ( ( ( x  e.  A  |->  B )  |`  A )  |`  ( D [,) +oo ) )  =  ( ( ( x  e.  A  |->  C )  |`  A )  |`  ( D [,) +oo ) ) )
37 ssid 3624 . . . . . . . 8  |-  A  C_  A
38 resmpt 5449 . . . . . . . 8  |-  ( A 
C_  A  ->  (
( x  e.  A  |->  B )  |`  A )  =  ( x  e.  A  |->  B ) )
39 reseq1 5390 . . . . . . . 8  |-  ( ( ( x  e.  A  |->  B )  |`  A )  =  ( x  e.  A  |->  B )  -> 
( ( ( x  e.  A  |->  B )  |`  A )  |`  ( D [,) +oo ) )  =  ( ( x  e.  A  |->  B )  |`  ( D [,) +oo ) ) )
4037, 38, 39mp2b 10 . . . . . . 7  |-  ( ( ( x  e.  A  |->  B )  |`  A )  |`  ( D [,) +oo ) )  =  ( ( x  e.  A  |->  B )  |`  ( D [,) +oo ) )
41 resmpt 5449 . . . . . . . 8  |-  ( A 
C_  A  ->  (
( x  e.  A  |->  C )  |`  A )  =  ( x  e.  A  |->  C ) )
42 reseq1 5390 . . . . . . . 8  |-  ( ( ( x  e.  A  |->  C )  |`  A )  =  ( x  e.  A  |->  C )  -> 
( ( ( x  e.  A  |->  C )  |`  A )  |`  ( D [,) +oo ) )  =  ( ( x  e.  A  |->  C )  |`  ( D [,) +oo ) ) )
4337, 41, 42mp2b 10 . . . . . . 7  |-  ( ( ( x  e.  A  |->  C )  |`  A )  |`  ( D [,) +oo ) )  =  ( ( x  e.  A  |->  C )  |`  ( D [,) +oo ) )
4436, 40, 433eqtr3g 2679 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  |->  B )  |`  ( D [,) +oo )
)  =  ( ( x  e.  A  |->  C )  |`  ( D [,) +oo ) ) )
4544breq1d 4663 . . . . 5  |-  ( ph  ->  ( ( ( x  e.  A  |->  B )  |`  ( D [,) +oo ) )  ~~> r  E  <->  ( ( x  e.  A  |->  C )  |`  ( D [,) +oo ) )  ~~> r  E ) )
4645adantr 481 . . . 4  |-  ( (
ph  /\  A  C_  RR )  ->  ( ( ( x  e.  A  |->  B )  |`  ( D [,) +oo ) )  ~~> r  E  <->  ( ( x  e.  A  |->  C )  |`  ( D [,) +oo ) )  ~~> r  E ) )
473, 2fmptd 6385 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  B ) : A --> CC )
4847adantr 481 . . . . 5  |-  ( (
ph  /\  A  C_  RR )  ->  ( x  e.  A  |->  B ) : A --> CC )
49 simpr 477 . . . . 5  |-  ( (
ph  /\  A  C_  RR )  ->  A  C_  RR )
5018adantr 481 . . . . 5  |-  ( (
ph  /\  A  C_  RR )  ->  D  e.  RR )
5148, 49, 50rlimresb 14296 . . . 4  |-  ( (
ph  /\  A  C_  RR )  ->  ( ( x  e.  A  |->  B )  ~~> r  E  <->  ( (
x  e.  A  |->  B )  |`  ( D [,) +oo ) )  ~~> r  E
) )
529, 8fmptd 6385 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  C ) : A --> CC )
5352adantr 481 . . . . 5  |-  ( (
ph  /\  A  C_  RR )  ->  ( x  e.  A  |->  C ) : A --> CC )
5453, 49, 50rlimresb 14296 . . . 4  |-  ( (
ph  /\  A  C_  RR )  ->  ( ( x  e.  A  |->  C )  ~~> r  E  <->  ( (
x  e.  A  |->  C )  |`  ( D [,) +oo ) )  ~~> r  E
) )
5546, 51, 543bitr4d 300 . . 3  |-  ( (
ph  /\  A  C_  RR )  ->  ( ( x  e.  A  |->  B )  ~~> r  E  <->  ( x  e.  A  |->  C )  ~~> r  E ) )
5655ex 450 . 2  |-  ( ph  ->  ( A  C_  RR  ->  ( ( x  e.  A  |->  B )  ~~> r  E  <->  ( x  e.  A  |->  C )  ~~> r  E ) ) )
576, 12, 56pm5.21ndd 369 1  |-  ( ph  ->  ( ( x  e.  A  |->  B )  ~~> r  E  <->  ( x  e.  A  |->  C )  ~~> r  E ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    i^i cin 3573    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114    |` cres 5116   -->wf 5884  (class class class)co 6650   CCcc 9934   RRcr 9935   +oocpnf 10071    <_ cle 10075   [,)cico 12177    ~~> r crli 14216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-ico 12181  df-rlim 14220
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator