MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islp Structured version   Visualization version   Unicode version

Theorem islp 20944
Description: The predicate " P is a limit point of  S." (Contributed by NM, 10-Feb-2007.)
Hypothesis
Ref Expression
lpfval.1  |-  X  = 
U. J
Assertion
Ref Expression
islp  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( P  e.  ( ( limPt `  J ) `  S )  <->  P  e.  ( ( cls `  J
) `  ( S  \  { P } ) ) ) )

Proof of Theorem islp
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 lpfval.1 . . . 4  |-  X  = 
U. J
21lpval 20943 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( limPt `  J
) `  S )  =  { x  |  x  e.  ( ( cls `  J ) `  ( S  \  { x }
) ) } )
32eleq2d 2687 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( P  e.  ( ( limPt `  J ) `  S )  <->  P  e.  { x  |  x  e.  ( ( cls `  J
) `  ( S  \  { x } ) ) } ) )
4 elex 3212 . . 3  |-  ( P  e.  ( ( cls `  J ) `  ( S  \  { P }
) )  ->  P  e.  _V )
5 id 22 . . . 4  |-  ( x  =  P  ->  x  =  P )
6 sneq 4187 . . . . . 6  |-  ( x  =  P  ->  { x }  =  { P } )
76difeq2d 3728 . . . . 5  |-  ( x  =  P  ->  ( S  \  { x }
)  =  ( S 
\  { P }
) )
87fveq2d 6195 . . . 4  |-  ( x  =  P  ->  (
( cls `  J
) `  ( S  \  { x } ) )  =  ( ( cls `  J ) `
 ( S  \  { P } ) ) )
95, 8eleq12d 2695 . . 3  |-  ( x  =  P  ->  (
x  e.  ( ( cls `  J ) `
 ( S  \  { x } ) )  <->  P  e.  (
( cls `  J
) `  ( S  \  { P } ) ) ) )
104, 9elab3 3358 . 2  |-  ( P  e.  { x  |  x  e.  ( ( cls `  J ) `
 ( S  \  { x } ) ) }  <->  P  e.  ( ( cls `  J
) `  ( S  \  { P } ) ) )
113, 10syl6bb 276 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( P  e.  ( ( limPt `  J ) `  S )  <->  P  e.  ( ( cls `  J
) `  ( S  \  { P } ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608    \ cdif 3571    C_ wss 3574   {csn 4177   U.cuni 4436   ` cfv 5888   Topctop 20698   clsccl 20822   limPtclp 20938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-top 20699  df-cld 20823  df-cls 20825  df-lp 20940
This theorem is referenced by:  lpdifsn  20947  lpss3  20948  islp2  20949  islp3  20950  maxlp  20951  restlp  20987  lpcls  21168  limcnlp  23642  limcflflem  23644
  Copyright terms: Public domain W3C validator