Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncoidN Structured version   Visualization version   Unicode version

Theorem ltrncoidN 35414
Description: Two translations are equal if the composition of one with the converse of the other is the zero translation. This is an analogue of vector subtraction. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ltrn1o.b  |-  B  =  ( Base `  K
)
ltrn1o.h  |-  H  =  ( LHyp `  K
)
ltrn1o.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
ltrncoidN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( ( F  o.  `' G
)  =  (  _I  |`  B )  <->  F  =  G ) )

Proof of Theorem ltrncoidN
StepHypRef Expression
1 simpl1 1064 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 simpl3 1066 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  ->  G  e.  T )
3 ltrn1o.b . . . . . . . . 9  |-  B  =  ( Base `  K
)
4 ltrn1o.h . . . . . . . . 9  |-  H  =  ( LHyp `  K
)
5 ltrn1o.t . . . . . . . . 9  |-  T  =  ( ( LTrn `  K
) `  W )
63, 4, 5ltrn1o 35410 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  G : B
-1-1-onto-> B )
71, 2, 6syl2anc 693 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  ->  G : B -1-1-onto-> B )
8 f1ococnv1 6165 . . . . . . 7  |-  ( G : B -1-1-onto-> B  ->  ( `' G  o.  G )  =  (  _I  |`  B ) )
97, 8syl 17 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  -> 
( `' G  o.  G )  =  (  _I  |`  B )
)
109coeq2d 5284 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  -> 
( F  o.  ( `' G  o.  G
) )  =  ( F  o.  (  _I  |`  B ) ) )
11 simpl2 1065 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  ->  F  e.  T )
123, 4, 5ltrn1o 35410 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  F : B
-1-1-onto-> B )
131, 11, 12syl2anc 693 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  ->  F : B -1-1-onto-> B )
14 f1of 6137 . . . . . 6  |-  ( F : B -1-1-onto-> B  ->  F : B
--> B )
15 fcoi1 6078 . . . . . 6  |-  ( F : B --> B  -> 
( F  o.  (  _I  |`  B ) )  =  F )
1613, 14, 153syl 18 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  -> 
( F  o.  (  _I  |`  B ) )  =  F )
1710, 16eqtr2d 2657 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  ->  F  =  ( F  o.  ( `' G  o.  G ) ) )
18 coass 5654 . . . 4  |-  ( ( F  o.  `' G
)  o.  G )  =  ( F  o.  ( `' G  o.  G
) )
1917, 18syl6eqr 2674 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  ->  F  =  ( ( F  o.  `' G
)  o.  G ) )
20 simpr 477 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  -> 
( F  o.  `' G )  =  (  _I  |`  B )
)
2120coeq1d 5283 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  -> 
( ( F  o.  `' G )  o.  G
)  =  ( (  _I  |`  B )  o.  G ) )
22 f1of 6137 . . . . 5  |-  ( G : B -1-1-onto-> B  ->  G : B
--> B )
23 fcoi2 6079 . . . . 5  |-  ( G : B --> B  -> 
( (  _I  |`  B )  o.  G )  =  G )
247, 22, 233syl 18 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  -> 
( (  _I  |`  B )  o.  G )  =  G )
2521, 24eqtrd 2656 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  -> 
( ( F  o.  `' G )  o.  G
)  =  G )
2619, 25eqtrd 2656 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  ->  F  =  G )
27 simpr 477 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  F  =  G )  ->  F  =  G )
2827coeq1d 5283 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  F  =  G )  ->  ( F  o.  `' G
)  =  ( G  o.  `' G ) )
29 simpl1 1064 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  F  =  G )  ->  ( K  e.  HL  /\  W  e.  H ) )
30 simpl3 1066 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  F  =  G )  ->  G  e.  T )
3129, 30, 6syl2anc 693 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  F  =  G )  ->  G : B -1-1-onto-> B )
32 f1ococnv2 6163 . . . 4  |-  ( G : B -1-1-onto-> B  ->  ( G  o.  `' G )  =  (  _I  |`  B )
)
3331, 32syl 17 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  F  =  G )  ->  ( G  o.  `' G
)  =  (  _I  |`  B ) )
3428, 33eqtrd 2656 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  F  =  G )  ->  ( F  o.  `' G
)  =  (  _I  |`  B ) )
3526, 34impbida 877 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( ( F  o.  `' G
)  =  (  _I  |`  B )  <->  F  =  G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    _I cid 5023   `'ccnv 5113    |` cres 5116    o. ccom 5118   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888   Basecbs 15857   HLchlt 34637   LHypclh 35270   LTrncltrn 35387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-laut 35275  df-ldil 35390  df-ltrn 35391
This theorem is referenced by:  tendospcanN  36312
  Copyright terms: Public domain W3C validator