| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnid | Structured version Visualization version Unicode version | ||
| Description: A lattice translation is
the identity function iff all atoms not under
the fiducial co-atom |
| Ref | Expression |
|---|---|
| ltrneq.b |
|
| ltrneq.l |
|
| ltrneq.a |
|
| ltrneq.h |
|
| ltrneq.t |
|
| Ref | Expression |
|---|---|
| ltrnid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp-4l 806 |
. . . . . . 7
| |
| 2 | ltrneq.h |
. . . . . . . . 9
| |
| 3 | eqid 2622 |
. . . . . . . . 9
| |
| 4 | ltrneq.t |
. . . . . . . . 9
| |
| 5 | 2, 3, 4 | ltrnlaut 35409 |
. . . . . . . 8
|
| 6 | 5 | ad2antrr 762 |
. . . . . . 7
|
| 7 | simpr 477 |
. . . . . . 7
| |
| 8 | simplll 798 |
. . . . . . . . . . . . 13
| |
| 9 | simpllr 799 |
. . . . . . . . . . . . 13
| |
| 10 | ltrneq.b |
. . . . . . . . . . . . . . 15
| |
| 11 | ltrneq.a |
. . . . . . . . . . . . . . 15
| |
| 12 | 10, 11 | atbase 34576 |
. . . . . . . . . . . . . 14
|
| 13 | 12 | ad2antlr 763 |
. . . . . . . . . . . . 13
|
| 14 | simpr 477 |
. . . . . . . . . . . . 13
| |
| 15 | ltrneq.l |
. . . . . . . . . . . . . 14
| |
| 16 | 10, 15, 2, 4 | ltrnval1 35420 |
. . . . . . . . . . . . 13
|
| 17 | 8, 9, 13, 14, 16 | syl112anc 1330 |
. . . . . . . . . . . 12
|
| 18 | 17 | ex 450 |
. . . . . . . . . . 11
|
| 19 | pm2.61 183 |
. . . . . . . . . . 11
| |
| 20 | 18, 19 | syl 17 |
. . . . . . . . . 10
|
| 21 | 20 | ralimdva 2962 |
. . . . . . . . 9
|
| 22 | 21 | imp 445 |
. . . . . . . 8
|
| 23 | 22 | adantr 481 |
. . . . . . 7
|
| 24 | 10, 11, 3 | lauteq 35381 |
. . . . . . 7
|
| 25 | 1, 6, 7, 23, 24 | syl31anc 1329 |
. . . . . 6
|
| 26 | fvresi 6439 |
. . . . . . 7
| |
| 27 | 26 | adantl 482 |
. . . . . 6
|
| 28 | 25, 27 | eqtr4d 2659 |
. . . . 5
|
| 29 | 28 | ralrimiva 2966 |
. . . 4
|
| 30 | 10, 2, 4 | ltrn1o 35410 |
. . . . . . 7
|
| 31 | 30 | adantr 481 |
. . . . . 6
|
| 32 | f1ofn 6138 |
. . . . . 6
| |
| 33 | 31, 32 | syl 17 |
. . . . 5
|
| 34 | fnresi 6008 |
. . . . 5
| |
| 35 | eqfnfv 6311 |
. . . . 5
| |
| 36 | 33, 34, 35 | sylancl 694 |
. . . 4
|
| 37 | 29, 36 | mpbird 247 |
. . 3
|
| 38 | 37 | ex 450 |
. 2
|
| 39 | 12 | adantl 482 |
. . . . . 6
|
| 40 | fvresi 6439 |
. . . . . 6
| |
| 41 | 39, 40 | syl 17 |
. . . . 5
|
| 42 | fveq1 6190 |
. . . . . 6
| |
| 43 | 42 | eqeq1d 2624 |
. . . . 5
|
| 44 | 41, 43 | syl5ibrcom 237 |
. . . 4
|
| 45 | 44 | a1dd 50 |
. . 3
|
| 46 | 45 | ralrimdva 2969 |
. 2
|
| 47 | 38, 46 | impbid 202 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-map 7859 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-laut 35275 df-ldil 35390 df-ltrn 35391 |
| This theorem is referenced by: ltrnnid 35422 |
| Copyright terms: Public domain | W3C validator |