MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssxr Structured version   Visualization version   Unicode version

Theorem ssxr 10107
Description: The three (non-exclusive) possibilities implied by a subset of extended reals. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
ssxr  |-  ( A 
C_  RR*  ->  ( A  C_  RR  \/ +oo  e.  A  \/ -oo  e.  A
) )

Proof of Theorem ssxr
StepHypRef Expression
1 df-pr 4180 . . . . . . 7  |-  { +oo , -oo }  =  ( { +oo }  u.  { -oo } )
21ineq2i 3811 . . . . . 6  |-  ( A  i^i  { +oo , -oo } )  =  ( A  i^i  ( { +oo }  u.  { -oo } ) )
3 indi 3873 . . . . . 6  |-  ( A  i^i  ( { +oo }  u.  { -oo }
) )  =  ( ( A  i^i  { +oo } )  u.  ( A  i^i  { -oo }
) )
42, 3eqtri 2644 . . . . 5  |-  ( A  i^i  { +oo , -oo } )  =  ( ( A  i^i  { +oo } )  u.  ( A  i^i  { -oo }
) )
5 disjsn 4246 . . . . . . . 8  |-  ( ( A  i^i  { +oo } )  =  (/)  <->  -. +oo  e.  A )
6 disjsn 4246 . . . . . . . 8  |-  ( ( A  i^i  { -oo } )  =  (/)  <->  -. -oo  e.  A )
75, 6anbi12i 733 . . . . . . 7  |-  ( ( ( A  i^i  { +oo } )  =  (/)  /\  ( A  i^i  { -oo } )  =  (/) ) 
<->  ( -. +oo  e.  A  /\  -. -oo  e.  A ) )
87biimpri 218 . . . . . 6  |-  ( ( -. +oo  e.  A  /\  -. -oo  e.  A
)  ->  ( ( A  i^i  { +oo }
)  =  (/)  /\  ( A  i^i  { -oo }
)  =  (/) ) )
9 pm4.56 516 . . . . . 6  |-  ( ( -. +oo  e.  A  /\  -. -oo  e.  A
)  <->  -.  ( +oo  e.  A  \/ -oo  e.  A ) )
10 un00 4011 . . . . . 6  |-  ( ( ( A  i^i  { +oo } )  =  (/)  /\  ( A  i^i  { -oo } )  =  (/) ) 
<->  ( ( A  i^i  { +oo } )  u.  ( A  i^i  { -oo } ) )  =  (/) )
118, 9, 103imtr3i 280 . . . . 5  |-  ( -.  ( +oo  e.  A  \/ -oo  e.  A )  ->  ( ( A  i^i  { +oo }
)  u.  ( A  i^i  { -oo }
) )  =  (/) )
124, 11syl5eq 2668 . . . 4  |-  ( -.  ( +oo  e.  A  \/ -oo  e.  A )  ->  ( A  i^i  { +oo , -oo }
)  =  (/) )
13 reldisj 4020 . . . . 5  |-  ( A 
C_  ( RR  u.  { +oo , -oo }
)  ->  ( ( A  i^i  { +oo , -oo } )  =  (/)  <->  A  C_  ( ( RR  u.  { +oo , -oo }
)  \  { +oo , -oo } ) ) )
14 renfdisj 10098 . . . . . . . 8  |-  ( RR 
i^i  { +oo , -oo } )  =  (/)
15 disj3 4021 . . . . . . . 8  |-  ( ( RR  i^i  { +oo , -oo } )  =  (/) 
<->  RR  =  ( RR 
\  { +oo , -oo } ) )
1614, 15mpbi 220 . . . . . . 7  |-  RR  =  ( RR  \  { +oo , -oo } )
17 difun2 4048 . . . . . . 7  |-  ( ( RR  u.  { +oo , -oo } )  \  { +oo , -oo }
)  =  ( RR 
\  { +oo , -oo } )
1816, 17eqtr4i 2647 . . . . . 6  |-  RR  =  ( ( RR  u.  { +oo , -oo }
)  \  { +oo , -oo } )
1918sseq2i 3630 . . . . 5  |-  ( A 
C_  RR  <->  A  C_  ( ( RR  u.  { +oo , -oo } )  \  { +oo , -oo }
) )
2013, 19syl6bbr 278 . . . 4  |-  ( A 
C_  ( RR  u.  { +oo , -oo }
)  ->  ( ( A  i^i  { +oo , -oo } )  =  (/)  <->  A  C_  RR ) )
2112, 20syl5ib 234 . . 3  |-  ( A 
C_  ( RR  u.  { +oo , -oo }
)  ->  ( -.  ( +oo  e.  A  \/ -oo  e.  A )  ->  A  C_  RR ) )
2221orrd 393 . 2  |-  ( A 
C_  ( RR  u.  { +oo , -oo }
)  ->  ( ( +oo  e.  A  \/ -oo  e.  A )  \/  A  C_  RR ) )
23 df-xr 10078 . . 3  |-  RR*  =  ( RR  u.  { +oo , -oo } )
2423sseq2i 3630 . 2  |-  ( A 
C_  RR*  <->  A  C_  ( RR  u.  { +oo , -oo } ) )
25 3orrot 1044 . . 3  |-  ( ( A  C_  RR  \/ +oo  e.  A  \/ -oo  e.  A )  <->  ( +oo  e.  A  \/ -oo  e.  A  \/  A  C_  RR ) )
26 df-3or 1038 . . 3  |-  ( ( +oo  e.  A  \/ -oo  e.  A  \/  A  C_  RR )  <->  ( ( +oo  e.  A  \/ -oo  e.  A )  \/  A  C_  RR ) )
2725, 26bitri 264 . 2  |-  ( ( A  C_  RR  \/ +oo  e.  A  \/ -oo  e.  A )  <->  ( ( +oo  e.  A  \/ -oo  e.  A )  \/  A  C_  RR ) )
2822, 24, 273imtr4i 281 1  |-  ( A 
C_  RR*  ->  ( A  C_  RR  \/ +oo  e.  A  \/ -oo  e.  A
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    \/ w3o 1036    = wceq 1483    e. wcel 1990    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   {cpr 4179   RRcr 9935   +oocpnf 10071   -oocmnf 10072   RR*cxr 10073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078
This theorem is referenced by:  xrsupss  12139  xrinfmss  12140  xrssre  39564
  Copyright terms: Public domain W3C validator