Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvolbase Structured version   Visualization version   Unicode version

Theorem lvolbase 34864
Description: A 3-dim lattice volume is a lattice element. (Contributed by NM, 1-Jul-2012.)
Hypotheses
Ref Expression
lvolbase.b  |-  B  =  ( Base `  K
)
lvolbase.v  |-  V  =  ( LVols `  K )
Assertion
Ref Expression
lvolbase  |-  ( X  e.  V  ->  X  e.  B )

Proof of Theorem lvolbase
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 n0i 3920 . . . 4  |-  ( X  e.  V  ->  -.  V  =  (/) )
2 lvolbase.v . . . . 5  |-  V  =  ( LVols `  K )
32eqeq1i 2627 . . . 4  |-  ( V  =  (/)  <->  ( LVols `  K
)  =  (/) )
41, 3sylnib 318 . . 3  |-  ( X  e.  V  ->  -.  ( LVols `  K )  =  (/) )
5 fvprc 6185 . . 3  |-  ( -.  K  e.  _V  ->  (
LVols `  K )  =  (/) )
64, 5nsyl2 142 . 2  |-  ( X  e.  V  ->  K  e.  _V )
7 lvolbase.b . . . 4  |-  B  =  ( Base `  K
)
8 eqid 2622 . . . 4  |-  (  <o  `  K )  =  ( 
<o  `  K )
9 eqid 2622 . . . 4  |-  ( LPlanes `  K )  =  (
LPlanes `  K )
107, 8, 9, 2islvol 34859 . . 3  |-  ( K  e.  _V  ->  ( X  e.  V  <->  ( X  e.  B  /\  E. x  e.  ( LPlanes `  K )
x (  <o  `  K
) X ) ) )
1110simprbda 653 . 2  |-  ( ( K  e.  _V  /\  X  e.  V )  ->  X  e.  B )
126, 11mpancom 703 1  |-  ( X  e.  V  ->  X  e.  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200   (/)c0 3915   class class class wbr 4653   ` cfv 5888   Basecbs 15857    <o ccvr 34549   LPlanesclpl 34778   LVolsclvol 34779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-lvols 34786
This theorem is referenced by:  islvol2  34866  lvolnle3at  34868  lvolneatN  34874  lvolnelln  34875  lvolnelpln  34876  lplncvrlvol2  34901  lvolcmp  34903  2lplnja  34905
  Copyright terms: Public domain W3C validator