| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lvoli3 | Structured version Visualization version Unicode version | ||
| Description: Condition implying a 3-dim lattice volume. (Contributed by NM, 2-Aug-2012.) |
| Ref | Expression |
|---|---|
| lvoli3.l |
|
| lvoli3.j |
|
| lvoli3.a |
|
| lvoli3.p |
|
| lvoli3.v |
|
| Ref | Expression |
|---|---|
| lvoli3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 1065 |
. . 3
| |
| 2 | simpl3 1066 |
. . 3
| |
| 3 | simpr 477 |
. . 3
| |
| 4 | eqidd 2623 |
. . 3
| |
| 5 | breq2 4657 |
. . . . . 6
| |
| 6 | 5 | notbid 308 |
. . . . 5
|
| 7 | oveq1 6657 |
. . . . . 6
| |
| 8 | 7 | eqeq2d 2632 |
. . . . 5
|
| 9 | 6, 8 | anbi12d 747 |
. . . 4
|
| 10 | breq1 4656 |
. . . . . 6
| |
| 11 | 10 | notbid 308 |
. . . . 5
|
| 12 | oveq2 6658 |
. . . . . 6
| |
| 13 | 12 | eqeq2d 2632 |
. . . . 5
|
| 14 | 11, 13 | anbi12d 747 |
. . . 4
|
| 15 | 9, 14 | rspc2ev 3324 |
. . 3
|
| 16 | 1, 2, 3, 4, 15 | syl112anc 1330 |
. 2
|
| 17 | simpl1 1064 |
. . 3
| |
| 18 | hllat 34650 |
. . . . 5
| |
| 19 | 17, 18 | syl 17 |
. . . 4
|
| 20 | eqid 2622 |
. . . . . 6
| |
| 21 | lvoli3.p |
. . . . . 6
| |
| 22 | 20, 21 | lplnbase 34820 |
. . . . 5
|
| 23 | 1, 22 | syl 17 |
. . . 4
|
| 24 | lvoli3.a |
. . . . . 6
| |
| 25 | 20, 24 | atbase 34576 |
. . . . 5
|
| 26 | 2, 25 | syl 17 |
. . . 4
|
| 27 | lvoli3.j |
. . . . 5
| |
| 28 | 20, 27 | latjcl 17051 |
. . . 4
|
| 29 | 19, 23, 26, 28 | syl3anc 1326 |
. . 3
|
| 30 | lvoli3.l |
. . . 4
| |
| 31 | lvoli3.v |
. . . 4
| |
| 32 | 20, 30, 27, 24, 21, 31 | islvol3 34862 |
. . 3
|
| 33 | 17, 29, 32 | syl2anc 693 |
. 2
|
| 34 | 16, 33 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-lplanes 34785 df-lvols 34786 |
| This theorem is referenced by: dalem9 34958 dalem39 34997 |
| Copyright terms: Public domain | W3C validator |