Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdm0OLD Structured version   Visualization version   Unicode version

Theorem mapdm0OLD 39383
Description: The empty set is the only map with empty domain. (Contributed by Glauco Siliprandi, 11-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
mapdm0OLD  |-  ( A  e.  V  ->  ( A  ^m  (/) )  =  { (/)
} )

Proof of Theorem mapdm0OLD
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 0ex 4790 . . . . . 6  |-  (/)  e.  _V
2 elmapg 7870 . . . . . 6  |-  ( ( A  e.  V  /\  (/) 
e.  _V )  ->  (
f  e.  ( A  ^m  (/) )  <->  f : (/) --> A ) )
31, 2mpan2 707 . . . . 5  |-  ( A  e.  V  ->  (
f  e.  ( A  ^m  (/) )  <->  f : (/) --> A ) )
43biimpa 501 . . . 4  |-  ( ( A  e.  V  /\  f  e.  ( A  ^m  (/) ) )  -> 
f : (/) --> A )
5 f0bi 6088 . . . 4  |-  ( f : (/) --> A  <->  f  =  (/) )
64, 5sylib 208 . . 3  |-  ( ( A  e.  V  /\  f  e.  ( A  ^m  (/) ) )  -> 
f  =  (/) )
76ralrimiva 2966 . 2  |-  ( A  e.  V  ->  A. f  e.  ( A  ^m  (/) ) f  =  (/) )
8 f0 6086 . . . . . 6  |-  (/) : (/) --> A
98a1i 11 . . . . 5  |-  ( A  e.  V  ->  (/) : (/) --> A )
10 id 22 . . . . . 6  |-  ( A  e.  V  ->  A  e.  V )
111a1i 11 . . . . . 6  |-  ( A  e.  V  ->  (/)  e.  _V )
12 elmapg 7870 . . . . . 6  |-  ( ( A  e.  V  /\  (/) 
e.  _V )  ->  ( (/) 
e.  ( A  ^m  (/) )  <->  (/) : (/) --> A ) )
1310, 11, 12syl2anc 693 . . . . 5  |-  ( A  e.  V  ->  ( (/) 
e.  ( A  ^m  (/) )  <->  (/) : (/) --> A ) )
149, 13mpbird 247 . . . 4  |-  ( A  e.  V  ->  (/)  e.  ( A  ^m  (/) ) )
15 ne0i 3921 . . . 4  |-  ( (/)  e.  ( A  ^m  (/) )  -> 
( A  ^m  (/) )  =/=  (/) )
1614, 15syl 17 . . 3  |-  ( A  e.  V  ->  ( A  ^m  (/) )  =/=  (/) )
17 eqsn 4361 . . 3  |-  ( ( A  ^m  (/) )  =/=  (/)  ->  ( ( A  ^m  (/) )  =  { (/)
}  <->  A. f  e.  ( A  ^m  (/) ) f  =  (/) ) )
1816, 17syl 17 . 2  |-  ( A  e.  V  ->  (
( A  ^m  (/) )  =  { (/) }  <->  A. f  e.  ( A  ^m  (/) ) f  =  (/) ) )
197, 18mpbird 247 1  |-  ( A  e.  V  ->  ( A  ^m  (/) )  =  { (/)
} )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200   (/)c0 3915   {csn 4177   -->wf 5884  (class class class)co 6650    ^m cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator