Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssnnf1octb Structured version   Visualization version   Unicode version

Theorem ssnnf1octb 39382
Description: There exists a bijection between a subset of  NN and a given nonempty countable set. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Assertion
Ref Expression
ssnnf1octb  |-  ( ( A  ~<_  om  /\  A  =/=  (/) )  ->  E. f
( dom  f  C_  NN  /\  f : dom  f
-1-1-onto-> A ) )
Distinct variable group:    A, f

Proof of Theorem ssnnf1octb
Dummy variables  g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnfoctb 39213 . 2  |-  ( ( A  ~<_  om  /\  A  =/=  (/) )  ->  E. g 
g : NN -onto-> A
)
2 fofn 6117 . . . . . 6  |-  ( g : NN -onto-> A  -> 
g  Fn  NN )
3 nnex 11026 . . . . . . 7  |-  NN  e.  _V
43a1i 11 . . . . . 6  |-  ( g : NN -onto-> A  ->  NN  e.  _V )
5 ltwenn 12761 . . . . . . 7  |-  <  We  NN
65a1i 11 . . . . . 6  |-  ( g : NN -onto-> A  ->  <  We  NN )
72, 4, 6wessf1orn 39372 . . . . 5  |-  ( g : NN -onto-> A  ->  E. x  e.  ~P  NN ( g  |`  x
) : x -1-1-onto-> ran  g
)
8 f1odm 6141 . . . . . . . . . . 11  |-  ( ( g  |`  x ) : x -1-1-onto-> ran  g  ->  dom  ( g  |`  x
)  =  x )
98adantl 482 . . . . . . . . . 10  |-  ( ( x  e.  ~P NN  /\  ( g  |`  x
) : x -1-1-onto-> ran  g
)  ->  dom  ( g  |`  x )  =  x )
10 elpwi 4168 . . . . . . . . . . 11  |-  ( x  e.  ~P NN  ->  x 
C_  NN )
1110adantr 481 . . . . . . . . . 10  |-  ( ( x  e.  ~P NN  /\  ( g  |`  x
) : x -1-1-onto-> ran  g
)  ->  x  C_  NN )
129, 11eqsstrd 3639 . . . . . . . . 9  |-  ( ( x  e.  ~P NN  /\  ( g  |`  x
) : x -1-1-onto-> ran  g
)  ->  dom  ( g  |`  x )  C_  NN )
13123adant1 1079 . . . . . . . 8  |-  ( ( g : NN -onto-> A  /\  x  e.  ~P NN  /\  ( g  |`  x ) : x -1-1-onto-> ran  g )  ->  dom  ( g  |`  x
)  C_  NN )
14 simpr 477 . . . . . . . . . 10  |-  ( ( g : NN -onto-> A  /\  ( g  |`  x
) : x -1-1-onto-> ran  g
)  ->  ( g  |`  x ) : x -1-1-onto-> ran  g )
15 eqidd 2623 . . . . . . . . . . 11  |-  ( ( g : NN -onto-> A  /\  ( g  |`  x
) : x -1-1-onto-> ran  g
)  ->  ( g  |`  x )  =  ( g  |`  x )
)
168eqcomd 2628 . . . . . . . . . . . 12  |-  ( ( g  |`  x ) : x -1-1-onto-> ran  g  ->  x  =  dom  ( g  |`  x ) )
1716adantl 482 . . . . . . . . . . 11  |-  ( ( g : NN -onto-> A  /\  ( g  |`  x
) : x -1-1-onto-> ran  g
)  ->  x  =  dom  ( g  |`  x
) )
18 forn 6118 . . . . . . . . . . . 12  |-  ( g : NN -onto-> A  ->  ran  g  =  A
)
1918adantr 481 . . . . . . . . . . 11  |-  ( ( g : NN -onto-> A  /\  ( g  |`  x
) : x -1-1-onto-> ran  g
)  ->  ran  g  =  A )
2015, 17, 19f1oeq123d 6133 . . . . . . . . . 10  |-  ( ( g : NN -onto-> A  /\  ( g  |`  x
) : x -1-1-onto-> ran  g
)  ->  ( (
g  |`  x ) : x -1-1-onto-> ran  g  <->  ( g  |`  x ) : dom  ( g  |`  x
)
-1-1-onto-> A ) )
2114, 20mpbid 222 . . . . . . . . 9  |-  ( ( g : NN -onto-> A  /\  ( g  |`  x
) : x -1-1-onto-> ran  g
)  ->  ( g  |`  x ) : dom  ( g  |`  x
)
-1-1-onto-> A )
22213adant2 1080 . . . . . . . 8  |-  ( ( g : NN -onto-> A  /\  x  e.  ~P NN  /\  ( g  |`  x ) : x -1-1-onto-> ran  g )  ->  (
g  |`  x ) : dom  ( g  |`  x ) -1-1-onto-> A )
23 vex 3203 . . . . . . . . . 10  |-  g  e. 
_V
2423resex 5443 . . . . . . . . 9  |-  ( g  |`  x )  e.  _V
25 dmeq 5324 . . . . . . . . . . 11  |-  ( f  =  ( g  |`  x )  ->  dom  f  =  dom  ( g  |`  x ) )
2625sseq1d 3632 . . . . . . . . . 10  |-  ( f  =  ( g  |`  x )  ->  ( dom  f  C_  NN  <->  dom  ( g  |`  x )  C_  NN ) )
27 id 22 . . . . . . . . . . 11  |-  ( f  =  ( g  |`  x )  ->  f  =  ( g  |`  x ) )
28 eqidd 2623 . . . . . . . . . . 11  |-  ( f  =  ( g  |`  x )  ->  A  =  A )
2927, 25, 28f1oeq123d 6133 . . . . . . . . . 10  |-  ( f  =  ( g  |`  x )  ->  (
f : dom  f -1-1-onto-> A  <->  ( g  |`  x ) : dom  ( g  |`  x ) -1-1-onto-> A ) )
3026, 29anbi12d 747 . . . . . . . . 9  |-  ( f  =  ( g  |`  x )  ->  (
( dom  f  C_  NN  /\  f : dom  f
-1-1-onto-> A )  <->  ( dom  ( g  |`  x
)  C_  NN  /\  (
g  |`  x ) : dom  ( g  |`  x ) -1-1-onto-> A ) ) )
3124, 30spcev 3300 . . . . . . . 8  |-  ( ( dom  ( g  |`  x )  C_  NN  /\  ( g  |`  x
) : dom  (
g  |`  x ) -1-1-onto-> A )  ->  E. f ( dom  f  C_  NN  /\  f : dom  f -1-1-onto-> A ) )
3213, 22, 31syl2anc 693 . . . . . . 7  |-  ( ( g : NN -onto-> A  /\  x  e.  ~P NN  /\  ( g  |`  x ) : x -1-1-onto-> ran  g )  ->  E. f
( dom  f  C_  NN  /\  f : dom  f
-1-1-onto-> A ) )
33323exp 1264 . . . . . 6  |-  ( g : NN -onto-> A  -> 
( x  e.  ~P NN  ->  ( ( g  |`  x ) : x -1-1-onto-> ran  g  ->  E. f
( dom  f  C_  NN  /\  f : dom  f
-1-1-onto-> A ) ) ) )
3433rexlimdv 3030 . . . . 5  |-  ( g : NN -onto-> A  -> 
( E. x  e. 
~P  NN ( g  |`  x ) : x -1-1-onto-> ran  g  ->  E. f
( dom  f  C_  NN  /\  f : dom  f
-1-1-onto-> A ) ) )
357, 34mpd 15 . . . 4  |-  ( g : NN -onto-> A  ->  E. f ( dom  f  C_  NN  /\  f : dom  f -1-1-onto-> A ) )
3635a1i 11 . . 3  |-  ( ( A  ~<_  om  /\  A  =/=  (/) )  ->  ( g : NN -onto-> A  ->  E. f ( dom  f  C_  NN  /\  f : dom  f -1-1-onto-> A ) ) )
3736exlimdv 1861 . 2  |-  ( ( A  ~<_  om  /\  A  =/=  (/) )  ->  ( E. g  g : NN -onto-> A  ->  E. f ( dom  f  C_  NN  /\  f : dom  f -1-1-onto-> A ) ) )
381, 37mpd 15 1  |-  ( ( A  ~<_  om  /\  A  =/=  (/) )  ->  E. f
( dom  f  C_  NN  /\  f : dom  f
-1-1-onto-> A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   E.wrex 2913   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   class class class wbr 4653    We wwe 5072   dom cdm 5114   ran crn 5115    |` cres 5116   -onto->wfo 5886   -1-1-onto->wf1o 5887   omcom 7065    ~<_ cdom 7953    < clt 10074   NNcn 11020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688
This theorem is referenced by:  isomennd  40745
  Copyright terms: Public domain W3C validator