Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mclsrcl Structured version   Visualization version   Unicode version

Theorem mclsrcl 31458
Description: Reverse closure for the closure function. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mclsval.d  |-  D  =  (mDV `  T )
mclsval.e  |-  E  =  (mEx `  T )
mclsval.c  |-  C  =  (mCls `  T )
Assertion
Ref Expression
mclsrcl  |-  ( A  e.  ( K C B )  ->  ( T  e.  _V  /\  K  C_  D  /\  B  C_  E ) )

Proof of Theorem mclsrcl
Dummy variables  h  d  t  c  m  o  p  s  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 3920 . . 3  |-  ( A  e.  ( K C B )  ->  -.  ( K C B )  =  (/) )
2 mclsval.c . . . . . 6  |-  C  =  (mCls `  T )
3 fvprc 6185 . . . . . 6  |-  ( -.  T  e.  _V  ->  (mCls `  T )  =  (/) )
42, 3syl5eq 2668 . . . . 5  |-  ( -.  T  e.  _V  ->  C  =  (/) )
54oveqd 6667 . . . 4  |-  ( -.  T  e.  _V  ->  ( K C B )  =  ( K (/) B ) )
6 0ov 6682 . . . 4  |-  ( K
(/) B )  =  (/)
75, 6syl6eq 2672 . . 3  |-  ( -.  T  e.  _V  ->  ( K C B )  =  (/) )
81, 7nsyl2 142 . 2  |-  ( A  e.  ( K C B )  ->  T  e.  _V )
9 fveq2 6191 . . . . . . . . 9  |-  ( t  =  T  ->  (mCls `  t )  =  (mCls `  T ) )
109, 2syl6eqr 2674 . . . . . . . 8  |-  ( t  =  T  ->  (mCls `  t )  =  C )
1110oveqd 6667 . . . . . . 7  |-  ( t  =  T  ->  ( K (mCls `  t ) B )  =  ( K C B ) )
1211eleq2d 2687 . . . . . 6  |-  ( t  =  T  ->  ( A  e.  ( K
(mCls `  t ) B )  <->  A  e.  ( K C B ) ) )
13 fvex 6201 . . . . . . . . 9  |-  (mDV `  t )  e.  _V
1413elpw2 4828 . . . . . . . 8  |-  ( K  e.  ~P (mDV `  t )  <->  K  C_  (mDV `  t ) )
15 fveq2 6191 . . . . . . . . . 10  |-  ( t  =  T  ->  (mDV `  t )  =  (mDV
`  T ) )
16 mclsval.d . . . . . . . . . 10  |-  D  =  (mDV `  T )
1715, 16syl6eqr 2674 . . . . . . . . 9  |-  ( t  =  T  ->  (mDV `  t )  =  D )
1817sseq2d 3633 . . . . . . . 8  |-  ( t  =  T  ->  ( K  C_  (mDV `  t
)  <->  K  C_  D ) )
1914, 18syl5bb 272 . . . . . . 7  |-  ( t  =  T  ->  ( K  e.  ~P (mDV `  t )  <->  K  C_  D
) )
20 fvex 6201 . . . . . . . . 9  |-  (mEx `  t )  e.  _V
2120elpw2 4828 . . . . . . . 8  |-  ( B  e.  ~P (mEx `  t )  <->  B  C_  (mEx `  t ) )
22 fveq2 6191 . . . . . . . . . 10  |-  ( t  =  T  ->  (mEx `  t )  =  (mEx
`  T ) )
23 mclsval.e . . . . . . . . . 10  |-  E  =  (mEx `  T )
2422, 23syl6eqr 2674 . . . . . . . . 9  |-  ( t  =  T  ->  (mEx `  t )  =  E )
2524sseq2d 3633 . . . . . . . 8  |-  ( t  =  T  ->  ( B  C_  (mEx `  t
)  <->  B  C_  E ) )
2621, 25syl5bb 272 . . . . . . 7  |-  ( t  =  T  ->  ( B  e.  ~P (mEx `  t )  <->  B  C_  E
) )
2719, 26anbi12d 747 . . . . . 6  |-  ( t  =  T  ->  (
( K  e.  ~P (mDV `  t )  /\  B  e.  ~P (mEx `  t ) )  <->  ( K  C_  D  /\  B  C_  E ) ) )
2812, 27imbi12d 334 . . . . 5  |-  ( t  =  T  ->  (
( A  e.  ( K (mCls `  t
) B )  -> 
( K  e.  ~P (mDV `  t )  /\  B  e.  ~P (mEx `  t ) ) )  <-> 
( A  e.  ( K C B )  ->  ( K  C_  D  /\  B  C_  E
) ) ) )
29 vex 3203 . . . . . . 7  |-  t  e. 
_V
3013pwex 4848 . . . . . . . 8  |-  ~P (mDV `  t )  e.  _V
3120pwex 4848 . . . . . . . 8  |-  ~P (mEx `  t )  e.  _V
3230, 31mpt2ex 7247 . . . . . . 7  |-  ( d  e.  ~P (mDV `  t ) ,  h  e.  ~P (mEx `  t
)  |->  |^| { c  |  ( ( h  u. 
ran  (mVH `  t )
)  C_  c  /\  A. m A. o A. p ( <. m ,  o ,  p >.  e.  (mAx `  t
)  ->  A. s  e.  ran  (mSubst `  t
) ( ( ( s " ( o  u.  ran  (mVH `  t ) ) ) 
C_  c  /\  A. x A. y ( x m y  ->  (
( (mVars `  t
) `  ( s `  ( (mVH `  t
) `  x )
) )  X.  (
(mVars `  t ) `  ( s `  (
(mVH `  t ) `  y ) ) ) )  C_  d )
)  ->  ( s `  p )  e.  c ) ) ) } )  e.  _V
33 df-mcls 31394 . . . . . . . 8  |- mCls  =  ( t  e.  _V  |->  ( d  e.  ~P (mDV `  t ) ,  h  e.  ~P (mEx `  t
)  |->  |^| { c  |  ( ( h  u. 
ran  (mVH `  t )
)  C_  c  /\  A. m A. o A. p ( <. m ,  o ,  p >.  e.  (mAx `  t
)  ->  A. s  e.  ran  (mSubst `  t
) ( ( ( s " ( o  u.  ran  (mVH `  t ) ) ) 
C_  c  /\  A. x A. y ( x m y  ->  (
( (mVars `  t
) `  ( s `  ( (mVH `  t
) `  x )
) )  X.  (
(mVars `  t ) `  ( s `  (
(mVH `  t ) `  y ) ) ) )  C_  d )
)  ->  ( s `  p )  e.  c ) ) ) } ) )
3433fvmpt2 6291 . . . . . . 7  |-  ( ( t  e.  _V  /\  ( d  e.  ~P (mDV `  t ) ,  h  e.  ~P (mEx `  t )  |->  |^| { c  |  ( ( h  u.  ran  (mVH `  t ) )  C_  c  /\  A. m A. o A. p ( <.
m ,  o ,  p >.  e.  (mAx `  t )  ->  A. s  e.  ran  (mSubst `  t
) ( ( ( s " ( o  u.  ran  (mVH `  t ) ) ) 
C_  c  /\  A. x A. y ( x m y  ->  (
( (mVars `  t
) `  ( s `  ( (mVH `  t
) `  x )
) )  X.  (
(mVars `  t ) `  ( s `  (
(mVH `  t ) `  y ) ) ) )  C_  d )
)  ->  ( s `  p )  e.  c ) ) ) } )  e.  _V )  ->  (mCls `  t )  =  ( d  e. 
~P (mDV `  t
) ,  h  e. 
~P (mEx `  t
)  |->  |^| { c  |  ( ( h  u. 
ran  (mVH `  t )
)  C_  c  /\  A. m A. o A. p ( <. m ,  o ,  p >.  e.  (mAx `  t
)  ->  A. s  e.  ran  (mSubst `  t
) ( ( ( s " ( o  u.  ran  (mVH `  t ) ) ) 
C_  c  /\  A. x A. y ( x m y  ->  (
( (mVars `  t
) `  ( s `  ( (mVH `  t
) `  x )
) )  X.  (
(mVars `  t ) `  ( s `  (
(mVH `  t ) `  y ) ) ) )  C_  d )
)  ->  ( s `  p )  e.  c ) ) ) } ) )
3529, 32, 34mp2an 708 . . . . . 6  |-  (mCls `  t )  =  ( d  e.  ~P (mDV `  t ) ,  h  e.  ~P (mEx `  t
)  |->  |^| { c  |  ( ( h  u. 
ran  (mVH `  t )
)  C_  c  /\  A. m A. o A. p ( <. m ,  o ,  p >.  e.  (mAx `  t
)  ->  A. s  e.  ran  (mSubst `  t
) ( ( ( s " ( o  u.  ran  (mVH `  t ) ) ) 
C_  c  /\  A. x A. y ( x m y  ->  (
( (mVars `  t
) `  ( s `  ( (mVH `  t
) `  x )
) )  X.  (
(mVars `  t ) `  ( s `  (
(mVH `  t ) `  y ) ) ) )  C_  d )
)  ->  ( s `  p )  e.  c ) ) ) } )
3635elmpt2cl 6876 . . . . 5  |-  ( A  e.  ( K (mCls `  t ) B )  ->  ( K  e. 
~P (mDV `  t
)  /\  B  e.  ~P (mEx `  t )
) )
3728, 36vtoclg 3266 . . . 4  |-  ( T  e.  _V  ->  ( A  e.  ( K C B )  ->  ( K  C_  D  /\  B  C_  E ) ) )
388, 37mpcom 38 . . 3  |-  ( A  e.  ( K C B )  ->  ( K  C_  D  /\  B  C_  E ) )
3938simpld 475 . 2  |-  ( A  e.  ( K C B )  ->  K  C_  D )
4038simprd 479 . 2  |-  ( A  e.  ( K C B )  ->  B  C_  E )
418, 39, 403jca 1242 1  |-  ( A  e.  ( K C B )  ->  ( T  e.  _V  /\  K  C_  D  /\  B  C_  E ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   _Vcvv 3200    u. cun 3572    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   <.cotp 4185   |^|cint 4475   class class class wbr 4653    X. cxp 5112   ran crn 5115   "cima 5117   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652  mAxcmax 31362  mExcmex 31364  mDVcmdv 31365  mVarscmvrs 31366  mSubstcmsub 31368  mVHcmvh 31369  mClscmcls 31374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-mcls 31394
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator