Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msubvrs Structured version   Visualization version   Unicode version

Theorem msubvrs 31457
Description: The set of variables in a substitution is the union, indexed by the variables in the original expression, of the variables in the substitution to that variable. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msubvrs.s  |-  S  =  (mSubst `  T )
msubvrs.e  |-  E  =  (mEx `  T )
msubvrs.v  |-  V  =  (mVars `  T )
msubvrs.h  |-  H  =  (mVH `  T )
Assertion
Ref Expression
msubvrs  |-  ( ( T  e. mFS  /\  F  e.  ran  S  /\  X  e.  E )  ->  ( V `  ( F `  X ) )  = 
U_ x  e.  ( V `  X ) ( V `  ( F `  ( H `  x ) ) ) )
Distinct variable groups:    x, E    x, F    x, T    x, X    x, V
Allowed substitution hints:    S( x)    H( x)

Proof of Theorem msubvrs
Dummy variables  e 
f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 msubvrs.e . . . . . 6  |-  E  =  (mEx `  T )
2 eqid 2622 . . . . . 6  |-  (mRSubst `  T
)  =  (mRSubst `  T
)
3 msubvrs.s . . . . . 6  |-  S  =  (mSubst `  T )
41, 2, 3elmsubrn 31425 . . . . 5  |-  ran  S  =  ran  ( f  e. 
ran  (mRSubst `  T )  |->  ( e  e.  E  |-> 
<. ( 1st `  e
) ,  ( f `
 ( 2nd `  e
) ) >. )
)
54eleq2i 2693 . . . 4  |-  ( F  e.  ran  S  <->  F  e.  ran  ( f  e.  ran  (mRSubst `  T )  |->  ( e  e.  E  |->  <.
( 1st `  e
) ,  ( f `
 ( 2nd `  e
) ) >. )
) )
6 eqid 2622 . . . . 5  |-  ( f  e.  ran  (mRSubst `  T
)  |->  ( e  e.  E  |->  <. ( 1st `  e
) ,  ( f `
 ( 2nd `  e
) ) >. )
)  =  ( f  e.  ran  (mRSubst `  T
)  |->  ( e  e.  E  |->  <. ( 1st `  e
) ,  ( f `
 ( 2nd `  e
) ) >. )
)
7 fvex 6201 . . . . . . 7  |-  (mEx `  T )  e.  _V
81, 7eqeltri 2697 . . . . . 6  |-  E  e. 
_V
98mptex 6486 . . . . 5  |-  ( e  e.  E  |->  <. ( 1st `  e ) ,  ( f `  ( 2nd `  e ) )
>. )  e.  _V
106, 9elrnmpti 5376 . . . 4  |-  ( F  e.  ran  ( f  e.  ran  (mRSubst `  T
)  |->  ( e  e.  E  |->  <. ( 1st `  e
) ,  ( f `
 ( 2nd `  e
) ) >. )
)  <->  E. f  e.  ran  (mRSubst `  T ) F  =  ( e  e.  E  |->  <. ( 1st `  e
) ,  ( f `
 ( 2nd `  e
) ) >. )
)
115, 10bitri 264 . . 3  |-  ( F  e.  ran  S  <->  E. f  e.  ran  (mRSubst `  T
) F  =  ( e  e.  E  |->  <.
( 1st `  e
) ,  ( f `
 ( 2nd `  e
) ) >. )
)
12 simp2 1062 . . . . . . . . 9  |-  ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  ->  f  e.  ran  (mRSubst `  T
) )
13 simp3 1063 . . . . . . . . . . 11  |-  ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  ->  X  e.  E )
14 eqid 2622 . . . . . . . . . . . 12  |-  (mTC `  T )  =  (mTC
`  T )
15 eqid 2622 . . . . . . . . . . . 12  |-  (mREx `  T )  =  (mREx `  T )
1614, 1, 15mexval 31399 . . . . . . . . . . 11  |-  E  =  ( (mTC `  T
)  X.  (mREx `  T ) )
1713, 16syl6eleq 2711 . . . . . . . . . 10  |-  ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  ->  X  e.  ( (mTC `  T
)  X.  (mREx `  T ) ) )
18 xp2nd 7199 . . . . . . . . . 10  |-  ( X  e.  ( (mTC `  T )  X.  (mREx `  T ) )  -> 
( 2nd `  X
)  e.  (mREx `  T ) )
1917, 18syl 17 . . . . . . . . 9  |-  ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  ->  ( 2nd `  X )  e.  (mREx `  T )
)
20 eqid 2622 . . . . . . . . . 10  |-  (mVR `  T )  =  (mVR
`  T )
212, 20, 15mrsubvrs 31419 . . . . . . . . 9  |-  ( ( f  e.  ran  (mRSubst `  T )  /\  ( 2nd `  X )  e.  (mREx `  T )
)  ->  ( ran  ( f `  ( 2nd `  X ) )  i^i  (mVR `  T
) )  =  U_ x  e.  ( ran  ( 2nd `  X )  i^i  (mVR `  T
) ) ( ran  ( f `  <" x "> )  i^i  (mVR `  T )
) )
2212, 19, 21syl2anc 693 . . . . . . . 8  |-  ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  ->  ( ran  ( f `  ( 2nd `  X ) )  i^i  (mVR `  T
) )  =  U_ x  e.  ( ran  ( 2nd `  X )  i^i  (mVR `  T
) ) ( ran  ( f `  <" x "> )  i^i  (mVR `  T )
) )
23 fveq2 6191 . . . . . . . . . . . . 13  |-  ( e  =  X  ->  ( 1st `  e )  =  ( 1st `  X
) )
24 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( e  =  X  ->  ( 2nd `  e )  =  ( 2nd `  X
) )
2524fveq2d 6195 . . . . . . . . . . . . 13  |-  ( e  =  X  ->  (
f `  ( 2nd `  e ) )  =  ( f `  ( 2nd `  X ) ) )
2623, 25opeq12d 4410 . . . . . . . . . . . 12  |-  ( e  =  X  ->  <. ( 1st `  e ) ,  ( f `  ( 2nd `  e ) )
>.  =  <. ( 1st `  X ) ,  ( f `  ( 2nd `  X ) ) >.
)
27 eqid 2622 . . . . . . . . . . . 12  |-  ( e  e.  E  |->  <. ( 1st `  e ) ,  ( f `  ( 2nd `  e ) )
>. )  =  (
e  e.  E  |->  <.
( 1st `  e
) ,  ( f `
 ( 2nd `  e
) ) >. )
28 opex 4932 . . . . . . . . . . . 12  |-  <. ( 1st `  e ) ,  ( f `  ( 2nd `  e ) )
>.  e.  _V
2926, 27, 28fvmpt3i 6287 . . . . . . . . . . 11  |-  ( X  e.  E  ->  (
( e  e.  E  |-> 
<. ( 1st `  e
) ,  ( f `
 ( 2nd `  e
) ) >. ) `  X )  =  <. ( 1st `  X ) ,  ( f `  ( 2nd `  X ) ) >. )
3013, 29syl 17 . . . . . . . . . 10  |-  ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  ->  (
( e  e.  E  |-> 
<. ( 1st `  e
) ,  ( f `
 ( 2nd `  e
) ) >. ) `  X )  =  <. ( 1st `  X ) ,  ( f `  ( 2nd `  X ) ) >. )
3130fveq2d 6195 . . . . . . . . 9  |-  ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  ->  ( V `  ( (
e  e.  E  |->  <.
( 1st `  e
) ,  ( f `
 ( 2nd `  e
) ) >. ) `  X ) )  =  ( V `  <. ( 1st `  X ) ,  ( f `  ( 2nd `  X ) ) >. ) )
32 xp1st 7198 . . . . . . . . . . . . 13  |-  ( X  e.  ( (mTC `  T )  X.  (mREx `  T ) )  -> 
( 1st `  X
)  e.  (mTC `  T ) )
3317, 32syl 17 . . . . . . . . . . . 12  |-  ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  ->  ( 1st `  X )  e.  (mTC `  T )
)
342, 15mrsubf 31414 . . . . . . . . . . . . . 14  |-  ( f  e.  ran  (mRSubst `  T
)  ->  f :
(mREx `  T ) --> (mREx `  T ) )
3512, 34syl 17 . . . . . . . . . . . . 13  |-  ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  ->  f : (mREx `  T ) --> (mREx `  T ) )
3618, 16eleq2s 2719 . . . . . . . . . . . . . 14  |-  ( X  e.  E  ->  ( 2nd `  X )  e.  (mREx `  T )
)
3713, 36syl 17 . . . . . . . . . . . . 13  |-  ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  ->  ( 2nd `  X )  e.  (mREx `  T )
)
3835, 37ffvelrnd 6360 . . . . . . . . . . . 12  |-  ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  ->  (
f `  ( 2nd `  X ) )  e.  (mREx `  T )
)
39 opelxpi 5148 . . . . . . . . . . . 12  |-  ( ( ( 1st `  X
)  e.  (mTC `  T )  /\  (
f `  ( 2nd `  X ) )  e.  (mREx `  T )
)  ->  <. ( 1st `  X ) ,  ( f `  ( 2nd `  X ) ) >.  e.  ( (mTC `  T
)  X.  (mREx `  T ) ) )
4033, 38, 39syl2anc 693 . . . . . . . . . . 11  |-  ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  ->  <. ( 1st `  X ) ,  ( f `  ( 2nd `  X ) )
>.  e.  ( (mTC `  T )  X.  (mREx `  T ) ) )
4140, 16syl6eleqr 2712 . . . . . . . . . 10  |-  ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  ->  <. ( 1st `  X ) ,  ( f `  ( 2nd `  X ) )
>.  e.  E )
42 msubvrs.v . . . . . . . . . . 11  |-  V  =  (mVars `  T )
4320, 1, 42mvrsval 31402 . . . . . . . . . 10  |-  ( <.
( 1st `  X
) ,  ( f `
 ( 2nd `  X
) ) >.  e.  E  ->  ( V `  <. ( 1st `  X ) ,  ( f `  ( 2nd `  X ) ) >. )  =  ( ran  ( 2nd `  <. ( 1st `  X ) ,  ( f `  ( 2nd `  X ) ) >. )  i^i  (mVR `  T ) ) )
4441, 43syl 17 . . . . . . . . 9  |-  ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  ->  ( V `  <. ( 1st `  X ) ,  ( f `  ( 2nd `  X ) ) >.
)  =  ( ran  ( 2nd `  <. ( 1st `  X ) ,  ( f `  ( 2nd `  X ) ) >. )  i^i  (mVR `  T ) ) )
45 fvex 6201 . . . . . . . . . . . . 13  |-  ( 1st `  X )  e.  _V
46 fvex 6201 . . . . . . . . . . . . 13  |-  ( f `
 ( 2nd `  X
) )  e.  _V
4745, 46op2nd 7177 . . . . . . . . . . . 12  |-  ( 2nd `  <. ( 1st `  X
) ,  ( f `
 ( 2nd `  X
) ) >. )  =  ( f `  ( 2nd `  X ) )
4847a1i 11 . . . . . . . . . . 11  |-  ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  ->  ( 2nd `  <. ( 1st `  X
) ,  ( f `
 ( 2nd `  X
) ) >. )  =  ( f `  ( 2nd `  X ) ) )
4948rneqd 5353 . . . . . . . . . 10  |-  ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  ->  ran  ( 2nd `  <. ( 1st `  X ) ,  ( f `  ( 2nd `  X ) )
>. )  =  ran  ( f `  ( 2nd `  X ) ) )
5049ineq1d 3813 . . . . . . . . 9  |-  ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  ->  ( ran  ( 2nd `  <. ( 1st `  X ) ,  ( f `  ( 2nd `  X ) ) >. )  i^i  (mVR `  T ) )  =  ( ran  ( f `
 ( 2nd `  X
) )  i^i  (mVR `  T ) ) )
5131, 44, 503eqtrd 2660 . . . . . . . 8  |-  ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  ->  ( V `  ( (
e  e.  E  |->  <.
( 1st `  e
) ,  ( f `
 ( 2nd `  e
) ) >. ) `  X ) )  =  ( ran  ( f `
 ( 2nd `  X
) )  i^i  (mVR `  T ) ) )
5220, 1, 42mvrsval 31402 . . . . . . . . . . 11  |-  ( X  e.  E  ->  ( V `  X )  =  ( ran  ( 2nd `  X )  i^i  (mVR `  T )
) )
5313, 52syl 17 . . . . . . . . . 10  |-  ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  ->  ( V `  X )  =  ( ran  ( 2nd `  X )  i^i  (mVR `  T )
) )
5453iuneq1d 4545 . . . . . . . . 9  |-  ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  ->  U_ x  e.  ( V `  X
) ( V `  ( ( e  e.  E  |->  <. ( 1st `  e
) ,  ( f `
 ( 2nd `  e
) ) >. ) `  ( H `  x
) ) )  = 
U_ x  e.  ( ran  ( 2nd `  X
)  i^i  (mVR `  T
) ) ( V `
 ( ( e  e.  E  |->  <. ( 1st `  e ) ,  ( f `  ( 2nd `  e ) )
>. ) `  ( H `
 x ) ) ) )
55 msubvrs.h . . . . . . . . . . . . . . . . 17  |-  H  =  (mVH `  T )
5620, 1, 55mvhf 31455 . . . . . . . . . . . . . . . 16  |-  ( T  e. mFS  ->  H : (mVR
`  T ) --> E )
57563ad2ant1 1082 . . . . . . . . . . . . . . 15  |-  ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  ->  H : (mVR `  T ) --> E )
58 inss2 3834 . . . . . . . . . . . . . . . 16  |-  ( ran  ( 2nd `  X
)  i^i  (mVR `  T
) )  C_  (mVR `  T )
5958sseli 3599 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( ran  ( 2nd `  X )  i^i  (mVR `  T )
)  ->  x  e.  (mVR `  T ) )
60 ffvelrn 6357 . . . . . . . . . . . . . . 15  |-  ( ( H : (mVR `  T ) --> E  /\  x  e.  (mVR `  T
) )  ->  ( H `  x )  e.  E )
6157, 59, 60syl2an 494 . . . . . . . . . . . . . 14  |-  ( ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  /\  x  e.  ( ran  ( 2nd `  X )  i^i  (mVR `  T ) ) )  ->  ( H `  x )  e.  E
)
62 fveq2 6191 . . . . . . . . . . . . . . . 16  |-  ( e  =  ( H `  x )  ->  ( 1st `  e )  =  ( 1st `  ( H `  x )
) )
63 fveq2 6191 . . . . . . . . . . . . . . . . 17  |-  ( e  =  ( H `  x )  ->  ( 2nd `  e )  =  ( 2nd `  ( H `  x )
) )
6463fveq2d 6195 . . . . . . . . . . . . . . . 16  |-  ( e  =  ( H `  x )  ->  (
f `  ( 2nd `  e ) )  =  ( f `  ( 2nd `  ( H `  x ) ) ) )
6562, 64opeq12d 4410 . . . . . . . . . . . . . . 15  |-  ( e  =  ( H `  x )  ->  <. ( 1st `  e ) ,  ( f `  ( 2nd `  e ) )
>.  =  <. ( 1st `  ( H `  x
) ) ,  ( f `  ( 2nd `  ( H `  x
) ) ) >.
)
6665, 27, 28fvmpt3i 6287 . . . . . . . . . . . . . 14  |-  ( ( H `  x )  e.  E  ->  (
( e  e.  E  |-> 
<. ( 1st `  e
) ,  ( f `
 ( 2nd `  e
) ) >. ) `  ( H `  x
) )  =  <. ( 1st `  ( H `
 x ) ) ,  ( f `  ( 2nd `  ( H `
 x ) ) ) >. )
6761, 66syl 17 . . . . . . . . . . . . 13  |-  ( ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  /\  x  e.  ( ran  ( 2nd `  X )  i^i  (mVR `  T ) ) )  ->  ( ( e  e.  E  |->  <. ( 1st `  e ) ,  ( f `  ( 2nd `  e ) )
>. ) `  ( H `
 x ) )  =  <. ( 1st `  ( H `  x )
) ,  ( f `
 ( 2nd `  ( H `  x )
) ) >. )
6859adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  /\  x  e.  ( ran  ( 2nd `  X )  i^i  (mVR `  T ) ) )  ->  x  e.  (mVR
`  T ) )
69 eqid 2622 . . . . . . . . . . . . . . . . 17  |-  (mType `  T )  =  (mType `  T )
7020, 69, 55mvhval 31431 . . . . . . . . . . . . . . . 16  |-  ( x  e.  (mVR `  T
)  ->  ( H `  x )  =  <. ( (mType `  T ) `  x ) ,  <" x "> >. )
7168, 70syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  /\  x  e.  ( ran  ( 2nd `  X )  i^i  (mVR `  T ) ) )  ->  ( H `  x )  =  <. ( (mType `  T ) `  x ) ,  <" x "> >. )
72 fvex 6201 . . . . . . . . . . . . . . . 16  |-  ( (mType `  T ) `  x
)  e.  _V
73 s1cli 13384 . . . . . . . . . . . . . . . . 17  |-  <" x ">  e. Word  _V
7473elexi 3213 . . . . . . . . . . . . . . . 16  |-  <" x ">  e.  _V
7572, 74op1std 7178 . . . . . . . . . . . . . . 15  |-  ( ( H `  x )  =  <. ( (mType `  T ) `  x
) ,  <" x "> >.  ->  ( 1st `  ( H `  x
) )  =  ( (mType `  T ) `  x ) )
7671, 75syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  /\  x  e.  ( ran  ( 2nd `  X )  i^i  (mVR `  T ) ) )  ->  ( 1st `  ( H `  x )
)  =  ( (mType `  T ) `  x
) )
7772, 74op2ndd 7179 . . . . . . . . . . . . . . . 16  |-  ( ( H `  x )  =  <. ( (mType `  T ) `  x
) ,  <" x "> >.  ->  ( 2nd `  ( H `  x
) )  =  <" x "> )
7871, 77syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  /\  x  e.  ( ran  ( 2nd `  X )  i^i  (mVR `  T ) ) )  ->  ( 2nd `  ( H `  x )
)  =  <" x "> )
7978fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  /\  x  e.  ( ran  ( 2nd `  X )  i^i  (mVR `  T ) ) )  ->  ( f `  ( 2nd `  ( H `
 x ) ) )  =  ( f `
 <" x "> ) )
8076, 79opeq12d 4410 . . . . . . . . . . . . 13  |-  ( ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  /\  x  e.  ( ran  ( 2nd `  X )  i^i  (mVR `  T ) ) )  ->  <. ( 1st `  ( H `  x )
) ,  ( f `
 ( 2nd `  ( H `  x )
) ) >.  =  <. ( (mType `  T ) `  x ) ,  ( f `  <" x "> ) >. )
8167, 80eqtrd 2656 . . . . . . . . . . . 12  |-  ( ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  /\  x  e.  ( ran  ( 2nd `  X )  i^i  (mVR `  T ) ) )  ->  ( ( e  e.  E  |->  <. ( 1st `  e ) ,  ( f `  ( 2nd `  e ) )
>. ) `  ( H `
 x ) )  =  <. ( (mType `  T ) `  x
) ,  ( f `
 <" x "> ) >. )
8281fveq2d 6195 . . . . . . . . . . 11  |-  ( ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  /\  x  e.  ( ran  ( 2nd `  X )  i^i  (mVR `  T ) ) )  ->  ( V `  ( ( e  e.  E  |->  <. ( 1st `  e
) ,  ( f `
 ( 2nd `  e
) ) >. ) `  ( H `  x
) ) )  =  ( V `  <. ( (mType `  T ) `  x ) ,  ( f `  <" x "> ) >. )
)
83 simpl1 1064 . . . . . . . . . . . . . . . 16  |-  ( ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  /\  x  e.  ( ran  ( 2nd `  X )  i^i  (mVR `  T ) ) )  ->  T  e. mFS )
8420, 14, 69mtyf2 31448 . . . . . . . . . . . . . . . 16  |-  ( T  e. mFS  ->  (mType `  T
) : (mVR `  T ) --> (mTC `  T ) )
8583, 84syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  /\  x  e.  ( ran  ( 2nd `  X )  i^i  (mVR `  T ) ) )  ->  (mType `  T
) : (mVR `  T ) --> (mTC `  T ) )
8685, 68ffvelrnd 6360 . . . . . . . . . . . . . 14  |-  ( ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  /\  x  e.  ( ran  ( 2nd `  X )  i^i  (mVR `  T ) ) )  ->  ( (mType `  T ) `  x
)  e.  (mTC `  T ) )
8735adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  /\  x  e.  ( ran  ( 2nd `  X )  i^i  (mVR `  T ) ) )  ->  f : (mREx `  T ) --> (mREx `  T ) )
88 elun2 3781 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  (mVR `  T
)  ->  x  e.  ( (mCN `  T )  u.  (mVR `  T )
) )
8968, 88syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  /\  x  e.  ( ran  ( 2nd `  X )  i^i  (mVR `  T ) ) )  ->  x  e.  ( (mCN `  T )  u.  (mVR `  T )
) )
9089s1cld 13383 . . . . . . . . . . . . . . . 16  |-  ( ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  /\  x  e.  ( ran  ( 2nd `  X )  i^i  (mVR `  T ) ) )  ->  <" x ">  e. Word  ( (mCN `  T )  u.  (mVR `  T ) ) )
91 eqid 2622 . . . . . . . . . . . . . . . . . 18  |-  (mCN `  T )  =  (mCN
`  T )
9291, 20, 15mrexval 31398 . . . . . . . . . . . . . . . . 17  |-  ( T  e. mFS  ->  (mREx `  T
)  = Word  ( (mCN `  T )  u.  (mVR `  T ) ) )
9383, 92syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  /\  x  e.  ( ran  ( 2nd `  X )  i^i  (mVR `  T ) ) )  ->  (mREx `  T
)  = Word  ( (mCN `  T )  u.  (mVR `  T ) ) )
9490, 93eleqtrrd 2704 . . . . . . . . . . . . . . 15  |-  ( ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  /\  x  e.  ( ran  ( 2nd `  X )  i^i  (mVR `  T ) ) )  ->  <" x ">  e.  (mREx `  T ) )
9587, 94ffvelrnd 6360 . . . . . . . . . . . . . 14  |-  ( ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  /\  x  e.  ( ran  ( 2nd `  X )  i^i  (mVR `  T ) ) )  ->  ( f `  <" x "> )  e.  (mREx `  T
) )
96 opelxpi 5148 . . . . . . . . . . . . . 14  |-  ( ( ( (mType `  T
) `  x )  e.  (mTC `  T )  /\  ( f `  <" x "> )  e.  (mREx `  T )
)  ->  <. ( (mType `  T ) `  x
) ,  ( f `
 <" x "> ) >.  e.  ( (mTC `  T )  X.  (mREx `  T )
) )
9786, 95, 96syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  /\  x  e.  ( ran  ( 2nd `  X )  i^i  (mVR `  T ) ) )  ->  <. ( (mType `  T ) `  x
) ,  ( f `
 <" x "> ) >.  e.  ( (mTC `  T )  X.  (mREx `  T )
) )
9897, 16syl6eleqr 2712 . . . . . . . . . . . 12  |-  ( ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  /\  x  e.  ( ran  ( 2nd `  X )  i^i  (mVR `  T ) ) )  ->  <. ( (mType `  T ) `  x
) ,  ( f `
 <" x "> ) >.  e.  E
)
9920, 1, 42mvrsval 31402 . . . . . . . . . . . 12  |-  ( <.
( (mType `  T
) `  x ) ,  ( f `  <" x "> ) >.  e.  E  -> 
( V `  <. ( (mType `  T ) `  x ) ,  ( f `  <" x "> ) >. )  =  ( ran  ( 2nd `  <. ( (mType `  T ) `  x
) ,  ( f `
 <" x "> ) >. )  i^i  (mVR `  T )
) )
10098, 99syl 17 . . . . . . . . . . 11  |-  ( ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  /\  x  e.  ( ran  ( 2nd `  X )  i^i  (mVR `  T ) ) )  ->  ( V `  <. ( (mType `  T
) `  x ) ,  ( f `  <" x "> ) >. )  =  ( ran  ( 2nd `  <. ( (mType `  T ) `  x ) ,  ( f `  <" x "> ) >. )  i^i  (mVR `  T )
) )
101 fvex 6201 . . . . . . . . . . . . . . 15  |-  ( f `
 <" x "> )  e.  _V
10272, 101op2nd 7177 . . . . . . . . . . . . . 14  |-  ( 2nd `  <. ( (mType `  T ) `  x
) ,  ( f `
 <" x "> ) >. )  =  ( f `  <" x "> )
103102a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  /\  x  e.  ( ran  ( 2nd `  X )  i^i  (mVR `  T ) ) )  ->  ( 2nd `  <. ( (mType `  T ) `  x ) ,  ( f `  <" x "> ) >. )  =  ( f `  <" x "> ) )
104103rneqd 5353 . . . . . . . . . . . 12  |-  ( ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  /\  x  e.  ( ran  ( 2nd `  X )  i^i  (mVR `  T ) ) )  ->  ran  ( 2nd ` 
<. ( (mType `  T
) `  x ) ,  ( f `  <" x "> ) >. )  =  ran  ( f `  <" x "> )
)
105104ineq1d 3813 . . . . . . . . . . 11  |-  ( ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  /\  x  e.  ( ran  ( 2nd `  X )  i^i  (mVR `  T ) ) )  ->  ( ran  ( 2nd `  <. ( (mType `  T ) `  x
) ,  ( f `
 <" x "> ) >. )  i^i  (mVR `  T )
)  =  ( ran  ( f `  <" x "> )  i^i  (mVR `  T )
) )
10682, 100, 1053eqtrd 2660 . . . . . . . . . 10  |-  ( ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  /\  x  e.  ( ran  ( 2nd `  X )  i^i  (mVR `  T ) ) )  ->  ( V `  ( ( e  e.  E  |->  <. ( 1st `  e
) ,  ( f `
 ( 2nd `  e
) ) >. ) `  ( H `  x
) ) )  =  ( ran  ( f `
 <" x "> )  i^i  (mVR `  T ) ) )
107106iuneq2dv 4542 . . . . . . . . 9  |-  ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  ->  U_ x  e.  ( ran  ( 2nd `  X )  i^i  (mVR `  T ) ) ( V `  ( ( e  e.  E  |->  <.
( 1st `  e
) ,  ( f `
 ( 2nd `  e
) ) >. ) `  ( H `  x
) ) )  = 
U_ x  e.  ( ran  ( 2nd `  X
)  i^i  (mVR `  T
) ) ( ran  ( f `  <" x "> )  i^i  (mVR `  T )
) )
10854, 107eqtrd 2656 . . . . . . . 8  |-  ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  ->  U_ x  e.  ( V `  X
) ( V `  ( ( e  e.  E  |->  <. ( 1st `  e
) ,  ( f `
 ( 2nd `  e
) ) >. ) `  ( H `  x
) ) )  = 
U_ x  e.  ( ran  ( 2nd `  X
)  i^i  (mVR `  T
) ) ( ran  ( f `  <" x "> )  i^i  (mVR `  T )
) )
10922, 51, 1083eqtr4d 2666 . . . . . . 7  |-  ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  ->  ( V `  ( (
e  e.  E  |->  <.
( 1st `  e
) ,  ( f `
 ( 2nd `  e
) ) >. ) `  X ) )  = 
U_ x  e.  ( V `  X ) ( V `  (
( e  e.  E  |-> 
<. ( 1st `  e
) ,  ( f `
 ( 2nd `  e
) ) >. ) `  ( H `  x
) ) ) )
110 fveq1 6190 . . . . . . . . 9  |-  ( F  =  ( e  e.  E  |->  <. ( 1st `  e
) ,  ( f `
 ( 2nd `  e
) ) >. )  ->  ( F `  X
)  =  ( ( e  e.  E  |->  <.
( 1st `  e
) ,  ( f `
 ( 2nd `  e
) ) >. ) `  X ) )
111110fveq2d 6195 . . . . . . . 8  |-  ( F  =  ( e  e.  E  |->  <. ( 1st `  e
) ,  ( f `
 ( 2nd `  e
) ) >. )  ->  ( V `  ( F `  X )
)  =  ( V `
 ( ( e  e.  E  |->  <. ( 1st `  e ) ,  ( f `  ( 2nd `  e ) )
>. ) `  X ) ) )
112 fveq1 6190 . . . . . . . . . 10  |-  ( F  =  ( e  e.  E  |->  <. ( 1st `  e
) ,  ( f `
 ( 2nd `  e
) ) >. )  ->  ( F `  ( H `  x )
)  =  ( ( e  e.  E  |->  <.
( 1st `  e
) ,  ( f `
 ( 2nd `  e
) ) >. ) `  ( H `  x
) ) )
113112fveq2d 6195 . . . . . . . . 9  |-  ( F  =  ( e  e.  E  |->  <. ( 1st `  e
) ,  ( f `
 ( 2nd `  e
) ) >. )  ->  ( V `  ( F `  ( H `  x ) ) )  =  ( V `  ( ( e  e.  E  |->  <. ( 1st `  e
) ,  ( f `
 ( 2nd `  e
) ) >. ) `  ( H `  x
) ) ) )
114113iuneq2d 4547 . . . . . . . 8  |-  ( F  =  ( e  e.  E  |->  <. ( 1st `  e
) ,  ( f `
 ( 2nd `  e
) ) >. )  ->  U_ x  e.  ( V `  X ) ( V `  ( F `  ( H `  x ) ) )  =  U_ x  e.  ( V `  X
) ( V `  ( ( e  e.  E  |->  <. ( 1st `  e
) ,  ( f `
 ( 2nd `  e
) ) >. ) `  ( H `  x
) ) ) )
115111, 114eqeq12d 2637 . . . . . . 7  |-  ( F  =  ( e  e.  E  |->  <. ( 1st `  e
) ,  ( f `
 ( 2nd `  e
) ) >. )  ->  ( ( V `  ( F `  X ) )  =  U_ x  e.  ( V `  X
) ( V `  ( F `  ( H `
 x ) ) )  <->  ( V `  ( ( e  e.  E  |->  <. ( 1st `  e
) ,  ( f `
 ( 2nd `  e
) ) >. ) `  X ) )  = 
U_ x  e.  ( V `  X ) ( V `  (
( e  e.  E  |-> 
<. ( 1st `  e
) ,  ( f `
 ( 2nd `  e
) ) >. ) `  ( H `  x
) ) ) ) )
116109, 115syl5ibrcom 237 . . . . . 6  |-  ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
)  /\  X  e.  E )  ->  ( F  =  ( e  e.  E  |->  <. ( 1st `  e ) ,  ( f `  ( 2nd `  e ) )
>. )  ->  ( V `
 ( F `  X ) )  = 
U_ x  e.  ( V `  X ) ( V `  ( F `  ( H `  x ) ) ) ) )
1171163expia 1267 . . . . 5  |-  ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
) )  ->  ( X  e.  E  ->  ( F  =  ( e  e.  E  |->  <. ( 1st `  e ) ,  ( f `  ( 2nd `  e ) )
>. )  ->  ( V `
 ( F `  X ) )  = 
U_ x  e.  ( V `  X ) ( V `  ( F `  ( H `  x ) ) ) ) ) )
118117com23 86 . . . 4  |-  ( ( T  e. mFS  /\  f  e.  ran  (mRSubst `  T
) )  ->  ( F  =  ( e  e.  E  |->  <. ( 1st `  e ) ,  ( f `  ( 2nd `  e ) )
>. )  ->  ( X  e.  E  ->  ( V `  ( F `  X ) )  = 
U_ x  e.  ( V `  X ) ( V `  ( F `  ( H `  x ) ) ) ) ) )
119118rexlimdva 3031 . . 3  |-  ( T  e. mFS  ->  ( E. f  e.  ran  (mRSubst `  T
) F  =  ( e  e.  E  |->  <.
( 1st `  e
) ,  ( f `
 ( 2nd `  e
) ) >. )  ->  ( X  e.  E  ->  ( V `  ( F `  X )
)  =  U_ x  e.  ( V `  X
) ( V `  ( F `  ( H `
 x ) ) ) ) ) )
12011, 119syl5bi 232 . 2  |-  ( T  e. mFS  ->  ( F  e. 
ran  S  ->  ( X  e.  E  ->  ( V `  ( F `  X ) )  = 
U_ x  e.  ( V `  X ) ( V `  ( F `  ( H `  x ) ) ) ) ) )
1211203imp 1256 1  |-  ( ( T  e. mFS  /\  F  e.  ran  S  /\  X  e.  E )  ->  ( V `  ( F `  X ) )  = 
U_ x  e.  ( V `  X ) ( V `  ( F `  ( H `  x ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200    u. cun 3572    i^i cin 3573   <.cop 4183   U_ciun 4520    |-> cmpt 4729    X. cxp 5112   ran crn 5115   -->wf 5884   ` cfv 5888   1stc1st 7166   2ndc2nd 7167  Word cword 13291   <"cs1 13294  mCNcmcn 31357  mVRcmvar 31358  mTypecmty 31359  mTCcmtc 31361  mRExcmrex 31363  mExcmex 31364  mVarscmvrs 31366  mRSubstcmrsub 31367  mSubstcmsub 31368  mVHcmvh 31369  mFScmfs 31373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-frmd 17386  df-mrex 31383  df-mex 31384  df-mvrs 31386  df-mrsub 31387  df-msub 31388  df-mvh 31389  df-mfs 31393
This theorem is referenced by:  mclsppslem  31480
  Copyright terms: Public domain W3C validator