Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meadjiun Structured version   Visualization version   Unicode version

Theorem meadjiun 40683
Description: The measure of the disjoint union of a countable set is the extended sum of the measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
meadjiun.1  |-  F/ k
ph
meadjiun.m  |-  ( ph  ->  M  e. Meas )
meadjiun.s  |-  S  =  dom  M
meadjiun.b  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  S )
meadjiun.a  |-  ( ph  ->  A  ~<_  om )
meadjiun.dj  |-  ( ph  -> Disj  k  e.  A  B
)
Assertion
Ref Expression
meadjiun  |-  ( ph  ->  ( M `  U_ k  e.  A  B )  =  (Σ^ `  ( k  e.  A  |->  ( M `  B
) ) ) )
Distinct variable groups:    A, k    k, M    S, k
Allowed substitution hints:    ph( k)    B( k)

Proof of Theorem meadjiun
Dummy variables  x  i  j  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 meadjiun.1 . . . . 5  |-  F/ k
ph
2 meadjiun.b . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  S )
32ex 450 . . . . 5  |-  ( ph  ->  ( k  e.  A  ->  B  e.  S ) )
41, 3ralrimi 2957 . . . 4  |-  ( ph  ->  A. k  e.  A  B  e.  S )
5 dfiun3g 5378 . . . 4  |-  ( A. k  e.  A  B  e.  S  ->  U_ k  e.  A  B  =  U. ran  ( k  e.  A  |->  B ) )
64, 5syl 17 . . 3  |-  ( ph  ->  U_ k  e.  A  B  =  U. ran  (
k  e.  A  |->  B ) )
76fveq2d 6195 . 2  |-  ( ph  ->  ( M `  U_ k  e.  A  B )  =  ( M `  U. ran  ( k  e.  A  |->  B ) ) )
8 meadjiun.m . . 3  |-  ( ph  ->  M  e. Meas )
9 meadjiun.s . . 3  |-  S  =  dom  M
10 eqid 2622 . . . . 5  |-  ( k  e.  A  |->  B )  =  ( k  e.  A  |->  B )
1110rnmptss 6392 . . . 4  |-  ( A. k  e.  A  B  e.  S  ->  ran  (
k  e.  A  |->  B )  C_  S )
124, 11syl 17 . . 3  |-  ( ph  ->  ran  ( k  e.  A  |->  B )  C_  S )
13 meadjiun.a . . . 4  |-  ( ph  ->  A  ~<_  om )
14 1stcrestlem 21255 . . . 4  |-  ( A  ~<_  om  ->  ran  ( k  e.  A  |->  B )  ~<_  om )
1513, 14syl 17 . . 3  |-  ( ph  ->  ran  ( k  e.  A  |->  B )  ~<_  om )
16 meadjiun.dj . . . 4  |-  ( ph  -> Disj  k  e.  A  B
)
1710disjrnmpt2 39375 . . . 4  |-  (Disj  k  e.  A  B  -> Disj  x  e.  ran  ( k  e.  A  |->  B ) x )
1816, 17syl 17 . . 3  |-  ( ph  -> Disj  x  e.  ran  ( k  e.  A  |->  B ) x )
198, 9, 12, 15, 18meadjuni 40674 . 2  |-  ( ph  ->  ( M `  U. ran  ( k  e.  A  |->  B ) )  =  (Σ^ `  ( M  |`  ran  (
k  e.  A  |->  B ) ) ) )
20 reldom 7961 . . . . . 6  |-  Rel  ~<_
21 brrelex 5156 . . . . . 6  |-  ( ( Rel  ~<_  /\  A  ~<_  om )  ->  A  e.  _V )
2220, 21mpan 706 . . . . 5  |-  ( A  ~<_  om  ->  A  e.  _V )
2313, 22syl 17 . . . 4  |-  ( ph  ->  A  e.  _V )
241, 2, 10fmptdf 6387 . . . 4  |-  ( ph  ->  ( k  e.  A  |->  B ) : A --> S )
25 fveq2 6191 . . . . . 6  |-  ( j  =  i  ->  (
( k  e.  A  |->  B ) `  j
)  =  ( ( k  e.  A  |->  B ) `  i ) )
2625neeq1d 2853 . . . . 5  |-  ( j  =  i  ->  (
( ( k  e.  A  |->  B ) `  j )  =/=  (/)  <->  ( (
k  e.  A  |->  B ) `  i )  =/=  (/) ) )
2726cbvrabv 3199 . . . 4  |-  { j  e.  A  |  ( ( k  e.  A  |->  B ) `  j
)  =/=  (/) }  =  { i  e.  A  |  ( ( k  e.  A  |->  B ) `
 i )  =/=  (/) }
28 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  i  e.  A )  ->  i  e.  A )
29 nfv 1843 . . . . . . . . . . 11  |-  F/ k  i  e.  A
301, 29nfan 1828 . . . . . . . . . 10  |-  F/ k ( ph  /\  i  e.  A )
31 nfcv 2764 . . . . . . . . . . . 12  |-  F/_ k
i
3231nfcsb1 3548 . . . . . . . . . . 11  |-  F/_ k [_ i  /  k ]_ B
33 nfcv 2764 . . . . . . . . . . 11  |-  F/_ k S
3432, 33nfel 2777 . . . . . . . . . 10  |-  F/ k
[_ i  /  k ]_ B  e.  S
3530, 34nfim 1825 . . . . . . . . 9  |-  F/ k ( ( ph  /\  i  e.  A )  ->  [_ i  /  k ]_ B  e.  S
)
36 eleq1 2689 . . . . . . . . . . 11  |-  ( k  =  i  ->  (
k  e.  A  <->  i  e.  A ) )
3736anbi2d 740 . . . . . . . . . 10  |-  ( k  =  i  ->  (
( ph  /\  k  e.  A )  <->  ( ph  /\  i  e.  A ) ) )
38 csbeq1a 3542 . . . . . . . . . . 11  |-  ( k  =  i  ->  B  =  [_ i  /  k ]_ B )
3938eleq1d 2686 . . . . . . . . . 10  |-  ( k  =  i  ->  ( B  e.  S  <->  [_ i  / 
k ]_ B  e.  S
) )
4037, 39imbi12d 334 . . . . . . . . 9  |-  ( k  =  i  ->  (
( ( ph  /\  k  e.  A )  ->  B  e.  S )  <-> 
( ( ph  /\  i  e.  A )  ->  [_ i  /  k ]_ B  e.  S
) ) )
4135, 40, 2chvar 2262 . . . . . . . 8  |-  ( (
ph  /\  i  e.  A )  ->  [_ i  /  k ]_ B  e.  S )
4231, 32, 38, 10fvmptf 6301 . . . . . . . 8  |-  ( ( i  e.  A  /\  [_ i  /  k ]_ B  e.  S )  ->  ( ( k  e.  A  |->  B ) `  i )  =  [_ i  /  k ]_ B
)
4328, 41, 42syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  i  e.  A )  ->  (
( k  e.  A  |->  B ) `  i
)  =  [_ i  /  k ]_ B
)
4443disjeq2dv 4625 . . . . . 6  |-  ( ph  ->  (Disj  i  e.  A  ( ( k  e.  A  |->  B ) `  i )  <-> Disj  i  e.  A  [_ i  /  k ]_ B ) )
45 nfcv 2764 . . . . . . . . 9  |-  F/_ i B
4645, 32, 38cbvdisj 4630 . . . . . . . 8  |-  (Disj  k  e.  A  B  <-> Disj  i  e.  A  [_ i  /  k ]_ B )
4746bicomi 214 . . . . . . 7  |-  (Disj  i  e.  A  [_ i  / 
k ]_ B  <-> Disj  k  e.  A  B )
4847a1i 11 . . . . . 6  |-  ( ph  ->  (Disj  i  e.  A  [_ i  /  k ]_ B 
<-> Disj  k  e.  A  B
) )
4944, 48bitrd 268 . . . . 5  |-  ( ph  ->  (Disj  i  e.  A  ( ( k  e.  A  |->  B ) `  i )  <-> Disj  k  e.  A  B ) )
5016, 49mpbird 247 . . . 4  |-  ( ph  -> Disj  i  e.  A  (
( k  e.  A  |->  B ) `  i
) )
518, 9, 23, 24, 27, 50meadjiunlem 40682 . . 3  |-  ( ph  ->  (Σ^ `  ( M  |`  ran  (
k  e.  A  |->  B ) ) )  =  (Σ^ `  ( M  o.  (
k  e.  A  |->  B ) ) ) )
5245, 32, 38cbvmpt 4749 . . . . . . 7  |-  ( k  e.  A  |->  B )  =  ( i  e.  A  |->  [_ i  /  k ]_ B )
5352coeq2i 5282 . . . . . 6  |-  ( M  o.  ( k  e.  A  |->  B ) )  =  ( M  o.  ( i  e.  A  |-> 
[_ i  /  k ]_ B ) )
5453a1i 11 . . . . 5  |-  ( ph  ->  ( M  o.  (
k  e.  A  |->  B ) )  =  ( M  o.  ( i  e.  A  |->  [_ i  /  k ]_ B
) ) )
55 eqidd 2623 . . . . . 6  |-  ( ph  ->  ( i  e.  A  |-> 
[_ i  /  k ]_ B )  =  ( i  e.  A  |->  [_ i  /  k ]_ B
) )
568, 9meaf 40670 . . . . . . 7  |-  ( ph  ->  M : S --> ( 0 [,] +oo ) )
5756feqmptd 6249 . . . . . 6  |-  ( ph  ->  M  =  ( y  e.  S  |->  ( M `
 y ) ) )
58 fveq2 6191 . . . . . 6  |-  ( y  =  [_ i  / 
k ]_ B  ->  ( M `  y )  =  ( M `  [_ i  /  k ]_ B ) )
5941, 55, 57, 58fmptco 6396 . . . . 5  |-  ( ph  ->  ( M  o.  (
i  e.  A  |->  [_ i  /  k ]_ B
) )  =  ( i  e.  A  |->  ( M `  [_ i  /  k ]_ B
) ) )
60 nfcv 2764 . . . . . . . 8  |-  F/_ i
( M `  B
)
61 nfcv 2764 . . . . . . . . 9  |-  F/_ k M
6261, 32nffv 6198 . . . . . . . 8  |-  F/_ k
( M `  [_ i  /  k ]_ B
)
6338fveq2d 6195 . . . . . . . 8  |-  ( k  =  i  ->  ( M `  B )  =  ( M `  [_ i  /  k ]_ B ) )
6460, 62, 63cbvmpt 4749 . . . . . . 7  |-  ( k  e.  A  |->  ( M `
 B ) )  =  ( i  e.  A  |->  ( M `  [_ i  /  k ]_ B ) )
6564eqcomi 2631 . . . . . 6  |-  ( i  e.  A  |->  ( M `
 [_ i  /  k ]_ B ) )  =  ( k  e.  A  |->  ( M `  B
) )
6665a1i 11 . . . . 5  |-  ( ph  ->  ( i  e.  A  |->  ( M `  [_ i  /  k ]_ B
) )  =  ( k  e.  A  |->  ( M `  B ) ) )
6754, 59, 663eqtrd 2660 . . . 4  |-  ( ph  ->  ( M  o.  (
k  e.  A  |->  B ) )  =  ( k  e.  A  |->  ( M `  B ) ) )
6867fveq2d 6195 . . 3  |-  ( ph  ->  (Σ^ `  ( M  o.  (
k  e.  A  |->  B ) ) )  =  (Σ^ `  ( k  e.  A  |->  ( M `  B
) ) ) )
6951, 68eqtrd 2656 . 2  |-  ( ph  ->  (Σ^ `  ( M  |`  ran  (
k  e.  A  |->  B ) ) )  =  (Σ^ `  ( k  e.  A  |->  ( M `  B
) ) ) )
707, 19, 693eqtrd 2660 1  |-  ( ph  ->  ( M `  U_ k  e.  A  B )  =  (Σ^ `  ( k  e.  A  |->  ( M `  B
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   F/wnf 1708    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916   _Vcvv 3200   [_csb 3533    C_ wss 3574   (/)c0 3915   U.cuni 4436   U_ciun 4520  Disj wdisj 4620   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ran crn 5115    |` cres 5116    o. ccom 5118   Rel wrel 5119   ` cfv 5888  (class class class)co 6650   omcom 7065    ~<_ cdom 7953   0cc0 9936   +oocpnf 10071   [,]cicc 12178  Σ^csumge0 40579  Meascmea 40666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-acn 8768  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-sumge0 40580  df-mea 40667
This theorem is referenced by:  meaiunlelem  40685  meaiuninclem  40697  vonct  40907
  Copyright terms: Public domain W3C validator