Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metidv Structured version   Visualization version   Unicode version

Theorem metidv 29935
Description:  A and  B identify by the metric  D if their distance is zero. (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
metidv  |-  ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( A
(~Met `  D ) B 
<->  ( A D B )  =  0 ) )

Proof of Theorem metidv
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2689 . . . . . 6  |-  ( a  =  A  ->  (
a  e.  X  <->  A  e.  X ) )
2 eleq1 2689 . . . . . 6  |-  ( b  =  B  ->  (
b  e.  X  <->  B  e.  X ) )
31, 2bi2anan9 917 . . . . 5  |-  ( ( a  =  A  /\  b  =  B )  ->  ( ( a  e.  X  /\  b  e.  X )  <->  ( A  e.  X  /\  B  e.  X ) ) )
4 oveq12 6659 . . . . . 6  |-  ( ( a  =  A  /\  b  =  B )  ->  ( a D b )  =  ( A D B ) )
54eqeq1d 2624 . . . . 5  |-  ( ( a  =  A  /\  b  =  B )  ->  ( ( a D b )  =  0  <-> 
( A D B )  =  0 ) )
63, 5anbi12d 747 . . . 4  |-  ( ( a  =  A  /\  b  =  B )  ->  ( ( ( a  e.  X  /\  b  e.  X )  /\  (
a D b )  =  0 )  <->  ( ( A  e.  X  /\  B  e.  X )  /\  ( A D B )  =  0 ) ) )
7 eqid 2622 . . . 4  |-  { <. a ,  b >.  |  ( ( a  e.  X  /\  b  e.  X
)  /\  ( a D b )  =  0 ) }  =  { <. a ,  b
>.  |  ( (
a  e.  X  /\  b  e.  X )  /\  ( a D b )  =  0 ) }
86, 7brabga 4989 . . 3  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A { <. a ,  b >.  |  ( ( a  e.  X  /\  b  e.  X
)  /\  ( a D b )  =  0 ) } B  <->  ( ( A  e.  X  /\  B  e.  X
)  /\  ( A D B )  =  0 ) ) )
98adantl 482 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( A { <. a ,  b
>.  |  ( (
a  e.  X  /\  b  e.  X )  /\  ( a D b )  =  0 ) } B  <->  ( ( A  e.  X  /\  B  e.  X )  /\  ( A D B )  =  0 ) ) )
10 metidval 29933 . . . 4  |-  ( D  e.  (PsMet `  X
)  ->  (~Met `  D
)  =  { <. a ,  b >.  |  ( ( a  e.  X  /\  b  e.  X
)  /\  ( a D b )  =  0 ) } )
1110adantr 481 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  B  e.  X )
)  ->  (~Met `  D
)  =  { <. a ,  b >.  |  ( ( a  e.  X  /\  b  e.  X
)  /\  ( a D b )  =  0 ) } )
1211breqd 4664 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( A
(~Met `  D ) B 
<->  A { <. a ,  b >.  |  ( ( a  e.  X  /\  b  e.  X
)  /\  ( a D b )  =  0 ) } B
) )
13 ibar 525 . . 3  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( ( A D B )  =  0  <-> 
( ( A  e.  X  /\  B  e.  X )  /\  ( A D B )  =  0 ) ) )
1413adantl 482 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( ( A D B )  =  0  <->  ( ( A  e.  X  /\  B  e.  X )  /\  ( A D B )  =  0 ) ) )
159, 12, 143bitr4d 300 1  |-  ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( A
(~Met `  D ) B 
<->  ( A D B )  =  0 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   class class class wbr 4653   {copab 4712   ` cfv 5888  (class class class)co 6650   0cc0 9936  PsMetcpsmet 19730  ~Metcmetid 29929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-xr 10078  df-psmet 19738  df-metid 29931
This theorem is referenced by:  metideq  29936  metider  29937  pstmfval  29939  pstmxmet  29940
  Copyright terms: Public domain W3C validator