| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovmpt2dv2 | Structured version Visualization version Unicode version | ||
| Description: Alternate deduction version of ovmpt2 6796, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.) |
| Ref | Expression |
|---|---|
| ovmpt2dv2.1 |
|
| ovmpt2dv2.2 |
|
| ovmpt2dv2.3 |
|
| ovmpt2dv2.4 |
|
| Ref | Expression |
|---|---|
| ovmpt2dv2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2623 |
. . 3
| |
| 2 | ovmpt2dv2.1 |
. . . 4
| |
| 3 | ovmpt2dv2.2 |
. . . 4
| |
| 4 | ovmpt2dv2.3 |
. . . 4
| |
| 5 | ovmpt2dv2.4 |
. . . . . 6
| |
| 6 | 5 | eqeq2d 2632 |
. . . . 5
|
| 7 | 6 | biimpd 219 |
. . . 4
|
| 8 | nfmpt21 6722 |
. . . 4
| |
| 9 | nfcv 2764 |
. . . . . 6
| |
| 10 | nfcv 2764 |
. . . . . 6
| |
| 11 | 9, 8, 10 | nfov 6676 |
. . . . 5
|
| 12 | 11 | nfeq1 2778 |
. . . 4
|
| 13 | nfmpt22 6723 |
. . . 4
| |
| 14 | nfcv 2764 |
. . . . . 6
| |
| 15 | nfcv 2764 |
. . . . . 6
| |
| 16 | 14, 13, 15 | nfov 6676 |
. . . . 5
|
| 17 | 16 | nfeq1 2778 |
. . . 4
|
| 18 | 2, 3, 4, 7, 8, 12, 13, 17 | ovmpt2df 6792 |
. . 3
|
| 19 | 1, 18 | mpd 15 |
. 2
|
| 20 | oveq 6656 |
. . 3
| |
| 21 | 20 | eqeq1d 2624 |
. 2
|
| 22 | 19, 21 | syl5ibrcom 237 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 |
| This theorem is referenced by: coaval 16718 xpcco 16823 marrepval 20368 marrepeval 20369 marepveval 20374 submaval 20387 submaeval 20388 minmar1val 20454 minmar1eval 20455 nbgrval 26234 |
| Copyright terms: Public domain | W3C validator |