| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgcgrextend | Structured version Visualization version Unicode version | ||
| Description: Link congruence over a pair of line segments. Theorem 2.11 of [Schwabhauser] p. 29. (Contributed by Thierry Arnoux, 23-Mar-2019.) (Shortened by David A. Wheeler and Thierry Arnoux, 22-Apr-2020.) |
| Ref | Expression |
|---|---|
| tkgeom.p |
|
| tkgeom.d |
|
| tkgeom.i |
|
| tkgeom.g |
|
| tgcgrextend.a |
|
| tgcgrextend.b |
|
| tgcgrextend.c |
|
| tgcgrextend.d |
|
| tgcgrextend.e |
|
| tgcgrextend.f |
|
| tgcgrextend.1 |
|
| tgcgrextend.2 |
|
| tgcgrextend.3 |
|
| tgcgrextend.4 |
|
| Ref | Expression |
|---|---|
| tgcgrextend |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgcgrextend.4 |
. . . 4
| |
| 2 | 1 | adantr 481 |
. . 3
|
| 3 | simpr 477 |
. . . 4
| |
| 4 | 3 | oveq1d 6665 |
. . 3
|
| 5 | tkgeom.p |
. . . . 5
| |
| 6 | tkgeom.d |
. . . . 5
| |
| 7 | tkgeom.i |
. . . . 5
| |
| 8 | tkgeom.g |
. . . . . 6
| |
| 9 | 8 | adantr 481 |
. . . . 5
|
| 10 | tgcgrextend.a |
. . . . . 6
| |
| 11 | 10 | adantr 481 |
. . . . 5
|
| 12 | tgcgrextend.b |
. . . . . 6
| |
| 13 | 12 | adantr 481 |
. . . . 5
|
| 14 | tgcgrextend.d |
. . . . . 6
| |
| 15 | 14 | adantr 481 |
. . . . 5
|
| 16 | tgcgrextend.e |
. . . . . 6
| |
| 17 | 16 | adantr 481 |
. . . . 5
|
| 18 | tgcgrextend.3 |
. . . . . 6
| |
| 19 | 18 | adantr 481 |
. . . . 5
|
| 20 | 5, 6, 7, 9, 11, 13, 15, 17, 19, 3 | tgcgreq 25377 |
. . . 4
|
| 21 | 20 | oveq1d 6665 |
. . 3
|
| 22 | 2, 4, 21 | 3eqtr4d 2666 |
. 2
|
| 23 | 8 | adantr 481 |
. . 3
|
| 24 | tgcgrextend.c |
. . . 4
| |
| 25 | 24 | adantr 481 |
. . 3
|
| 26 | 10 | adantr 481 |
. . 3
|
| 27 | tgcgrextend.f |
. . . 4
| |
| 28 | 27 | adantr 481 |
. . 3
|
| 29 | 14 | adantr 481 |
. . 3
|
| 30 | 12 | adantr 481 |
. . . 4
|
| 31 | 16 | adantr 481 |
. . . 4
|
| 32 | simpr 477 |
. . . 4
| |
| 33 | tgcgrextend.1 |
. . . . 5
| |
| 34 | 33 | adantr 481 |
. . . 4
|
| 35 | tgcgrextend.2 |
. . . . 5
| |
| 36 | 35 | adantr 481 |
. . . 4
|
| 37 | 18 | adantr 481 |
. . . 4
|
| 38 | 1 | adantr 481 |
. . . 4
|
| 39 | 5, 6, 7, 23, 26, 29 | tgcgrtriv 25379 |
. . . 4
|
| 40 | 5, 6, 7, 23, 26, 30, 29, 31, 37 | tgcgrcomlr 25375 |
. . . 4
|
| 41 | 5, 6, 7, 23, 26, 30, 25, 29, 31, 28, 26, 29, 32, 34, 36, 37, 38, 39, 40 | axtg5seg 25364 |
. . 3
|
| 42 | 5, 6, 7, 23, 25, 26, 28, 29, 41 | tgcgrcomlr 25375 |
. 2
|
| 43 | 22, 42 | pm2.61dane 2881 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-trkgc 25347 df-trkgcb 25349 df-trkg 25352 |
| This theorem is referenced by: tgsegconeq 25381 tgcgrxfr 25413 lnext 25462 tgbtwnconn1lem1 25467 tgbtwnconn1lem2 25468 tgbtwnconn1lem3 25469 miriso 25565 mircgrextend 25577 midexlem 25587 opphllem 25627 dfcgra2 25721 |
| Copyright terms: Public domain | W3C validator |