MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgrextend Structured version   Visualization version   Unicode version

Theorem tgcgrextend 25380
Description: Link congruence over a pair of line segments. Theorem 2.11 of [Schwabhauser] p. 29. (Contributed by Thierry Arnoux, 23-Mar-2019.) (Shortened by David A. Wheeler and Thierry Arnoux, 22-Apr-2020.)
Hypotheses
Ref Expression
tkgeom.p  |-  P  =  ( Base `  G
)
tkgeom.d  |-  .-  =  ( dist `  G )
tkgeom.i  |-  I  =  (Itv `  G )
tkgeom.g  |-  ( ph  ->  G  e. TarskiG )
tgcgrextend.a  |-  ( ph  ->  A  e.  P )
tgcgrextend.b  |-  ( ph  ->  B  e.  P )
tgcgrextend.c  |-  ( ph  ->  C  e.  P )
tgcgrextend.d  |-  ( ph  ->  D  e.  P )
tgcgrextend.e  |-  ( ph  ->  E  e.  P )
tgcgrextend.f  |-  ( ph  ->  F  e.  P )
tgcgrextend.1  |-  ( ph  ->  B  e.  ( A I C ) )
tgcgrextend.2  |-  ( ph  ->  E  e.  ( D I F ) )
tgcgrextend.3  |-  ( ph  ->  ( A  .-  B
)  =  ( D 
.-  E ) )
tgcgrextend.4  |-  ( ph  ->  ( B  .-  C
)  =  ( E 
.-  F ) )
Assertion
Ref Expression
tgcgrextend  |-  ( ph  ->  ( A  .-  C
)  =  ( D 
.-  F ) )

Proof of Theorem tgcgrextend
StepHypRef Expression
1 tgcgrextend.4 . . . 4  |-  ( ph  ->  ( B  .-  C
)  =  ( E 
.-  F ) )
21adantr 481 . . 3  |-  ( (
ph  /\  A  =  B )  ->  ( B  .-  C )  =  ( E  .-  F
) )
3 simpr 477 . . . 4  |-  ( (
ph  /\  A  =  B )  ->  A  =  B )
43oveq1d 6665 . . 3  |-  ( (
ph  /\  A  =  B )  ->  ( A  .-  C )  =  ( B  .-  C
) )
5 tkgeom.p . . . . 5  |-  P  =  ( Base `  G
)
6 tkgeom.d . . . . 5  |-  .-  =  ( dist `  G )
7 tkgeom.i . . . . 5  |-  I  =  (Itv `  G )
8 tkgeom.g . . . . . 6  |-  ( ph  ->  G  e. TarskiG )
98adantr 481 . . . . 5  |-  ( (
ph  /\  A  =  B )  ->  G  e. TarskiG )
10 tgcgrextend.a . . . . . 6  |-  ( ph  ->  A  e.  P )
1110adantr 481 . . . . 5  |-  ( (
ph  /\  A  =  B )  ->  A  e.  P )
12 tgcgrextend.b . . . . . 6  |-  ( ph  ->  B  e.  P )
1312adantr 481 . . . . 5  |-  ( (
ph  /\  A  =  B )  ->  B  e.  P )
14 tgcgrextend.d . . . . . 6  |-  ( ph  ->  D  e.  P )
1514adantr 481 . . . . 5  |-  ( (
ph  /\  A  =  B )  ->  D  e.  P )
16 tgcgrextend.e . . . . . 6  |-  ( ph  ->  E  e.  P )
1716adantr 481 . . . . 5  |-  ( (
ph  /\  A  =  B )  ->  E  e.  P )
18 tgcgrextend.3 . . . . . 6  |-  ( ph  ->  ( A  .-  B
)  =  ( D 
.-  E ) )
1918adantr 481 . . . . 5  |-  ( (
ph  /\  A  =  B )  ->  ( A  .-  B )  =  ( D  .-  E
) )
205, 6, 7, 9, 11, 13, 15, 17, 19, 3tgcgreq 25377 . . . 4  |-  ( (
ph  /\  A  =  B )  ->  D  =  E )
2120oveq1d 6665 . . 3  |-  ( (
ph  /\  A  =  B )  ->  ( D  .-  F )  =  ( E  .-  F
) )
222, 4, 213eqtr4d 2666 . 2  |-  ( (
ph  /\  A  =  B )  ->  ( A  .-  C )  =  ( D  .-  F
) )
238adantr 481 . . 3  |-  ( (
ph  /\  A  =/=  B )  ->  G  e. TarskiG )
24 tgcgrextend.c . . . 4  |-  ( ph  ->  C  e.  P )
2524adantr 481 . . 3  |-  ( (
ph  /\  A  =/=  B )  ->  C  e.  P )
2610adantr 481 . . 3  |-  ( (
ph  /\  A  =/=  B )  ->  A  e.  P )
27 tgcgrextend.f . . . 4  |-  ( ph  ->  F  e.  P )
2827adantr 481 . . 3  |-  ( (
ph  /\  A  =/=  B )  ->  F  e.  P )
2914adantr 481 . . 3  |-  ( (
ph  /\  A  =/=  B )  ->  D  e.  P )
3012adantr 481 . . . 4  |-  ( (
ph  /\  A  =/=  B )  ->  B  e.  P )
3116adantr 481 . . . 4  |-  ( (
ph  /\  A  =/=  B )  ->  E  e.  P )
32 simpr 477 . . . 4  |-  ( (
ph  /\  A  =/=  B )  ->  A  =/=  B )
33 tgcgrextend.1 . . . . 5  |-  ( ph  ->  B  e.  ( A I C ) )
3433adantr 481 . . . 4  |-  ( (
ph  /\  A  =/=  B )  ->  B  e.  ( A I C ) )
35 tgcgrextend.2 . . . . 5  |-  ( ph  ->  E  e.  ( D I F ) )
3635adantr 481 . . . 4  |-  ( (
ph  /\  A  =/=  B )  ->  E  e.  ( D I F ) )
3718adantr 481 . . . 4  |-  ( (
ph  /\  A  =/=  B )  ->  ( A  .-  B )  =  ( D  .-  E ) )
381adantr 481 . . . 4  |-  ( (
ph  /\  A  =/=  B )  ->  ( B  .-  C )  =  ( E  .-  F ) )
395, 6, 7, 23, 26, 29tgcgrtriv 25379 . . . 4  |-  ( (
ph  /\  A  =/=  B )  ->  ( A  .-  A )  =  ( D  .-  D ) )
405, 6, 7, 23, 26, 30, 29, 31, 37tgcgrcomlr 25375 . . . 4  |-  ( (
ph  /\  A  =/=  B )  ->  ( B  .-  A )  =  ( E  .-  D ) )
415, 6, 7, 23, 26, 30, 25, 29, 31, 28, 26, 29, 32, 34, 36, 37, 38, 39, 40axtg5seg 25364 . . 3  |-  ( (
ph  /\  A  =/=  B )  ->  ( C  .-  A )  =  ( F  .-  D ) )
425, 6, 7, 23, 25, 26, 28, 29, 41tgcgrcomlr 25375 . 2  |-  ( (
ph  /\  A  =/=  B )  ->  ( A  .-  C )  =  ( D  .-  F ) )
4322, 42pm2.61dane 2881 1  |-  ( ph  ->  ( A  .-  C
)  =  ( D 
.-  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   ` cfv 5888  (class class class)co 6650   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-trkgc 25347  df-trkgcb 25349  df-trkg 25352
This theorem is referenced by:  tgsegconeq  25381  tgcgrxfr  25413  lnext  25462  tgbtwnconn1lem1  25467  tgbtwnconn1lem2  25468  tgbtwnconn1lem3  25469  miriso  25565  mircgrextend  25577  midexlem  25587  opphllem  25627  dfcgra2  25721
  Copyright terms: Public domain W3C validator