![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgcgrextend | Structured version Visualization version Unicode version |
Description: Link congruence over a pair of line segments. Theorem 2.11 of [Schwabhauser] p. 29. (Contributed by Thierry Arnoux, 23-Mar-2019.) (Shortened by David A. Wheeler and Thierry Arnoux, 22-Apr-2020.) |
Ref | Expression |
---|---|
tkgeom.p |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
tkgeom.d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
tkgeom.i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
tkgeom.g |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
tgcgrextend.a |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
tgcgrextend.b |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
tgcgrextend.c |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
tgcgrextend.d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
tgcgrextend.e |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
tgcgrextend.f |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
tgcgrextend.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
tgcgrextend.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
tgcgrextend.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
tgcgrextend.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
tgcgrextend |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgcgrextend.4 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | adantr 481 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | simpr 477 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | oveq1d 6665 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | tkgeom.p |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | tkgeom.d |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | tkgeom.i |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | tkgeom.g |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | 8 | adantr 481 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | tgcgrextend.a |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | 10 | adantr 481 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | tgcgrextend.b |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
13 | 12 | adantr 481 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | tgcgrextend.d |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
15 | 14 | adantr 481 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
16 | tgcgrextend.e |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
17 | 16 | adantr 481 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | tgcgrextend.3 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
19 | 18 | adantr 481 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | 5, 6, 7, 9, 11, 13, 15, 17, 19, 3 | tgcgreq 25377 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | 20 | oveq1d 6665 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | 2, 4, 21 | 3eqtr4d 2666 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
23 | 8 | adantr 481 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
24 | tgcgrextend.c |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
25 | 24 | adantr 481 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
26 | 10 | adantr 481 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
27 | tgcgrextend.f |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
28 | 27 | adantr 481 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
29 | 14 | adantr 481 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
30 | 12 | adantr 481 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
31 | 16 | adantr 481 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
32 | simpr 477 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
33 | tgcgrextend.1 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
34 | 33 | adantr 481 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
35 | tgcgrextend.2 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
36 | 35 | adantr 481 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
37 | 18 | adantr 481 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
38 | 1 | adantr 481 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
39 | 5, 6, 7, 23, 26, 29 | tgcgrtriv 25379 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
40 | 5, 6, 7, 23, 26, 30, 29, 31, 37 | tgcgrcomlr 25375 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
41 | 5, 6, 7, 23, 26, 30, 25, 29, 31, 28, 26, 29, 32, 34, 36, 37, 38, 39, 40 | axtg5seg 25364 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
42 | 5, 6, 7, 23, 25, 26, 28, 29, 41 | tgcgrcomlr 25375 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
43 | 22, 42 | pm2.61dane 2881 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-trkgc 25347 df-trkgcb 25349 df-trkg 25352 |
This theorem is referenced by: tgsegconeq 25381 tgcgrxfr 25413 lnext 25462 tgbtwnconn1lem1 25467 tgbtwnconn1lem2 25468 tgbtwnconn1lem3 25469 miriso 25565 mircgrextend 25577 midexlem 25587 opphllem 25627 dfcgra2 25721 |
Copyright terms: Public domain | W3C validator |