MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirhl2 Structured version   Visualization version   Unicode version

Theorem mirhl2 25576
Description: Deduce half-line relation from mirror point. (Contributed by Thierry Arnoux, 8-Aug-2020.)
Hypotheses
Ref Expression
mirval.p  |-  P  =  ( Base `  G
)
mirval.d  |-  .-  =  ( dist `  G )
mirval.i  |-  I  =  (Itv `  G )
mirval.l  |-  L  =  (LineG `  G )
mirval.s  |-  S  =  (pInvG `  G )
mirval.g  |-  ( ph  ->  G  e. TarskiG )
mirhl.m  |-  M  =  ( S `  A
)
mirhl.k  |-  K  =  (hlG `  G )
mirhl.a  |-  ( ph  ->  A  e.  P )
mirhl.x  |-  ( ph  ->  X  e.  P )
mirhl.y  |-  ( ph  ->  Y  e.  P )
mirhl.z  |-  ( ph  ->  Z  e.  P )
mirhl2.1  |-  ( ph  ->  X  =/=  A )
mirhl2.2  |-  ( ph  ->  Y  =/=  A )
mirhl2.3  |-  ( ph  ->  A  e.  ( X I ( M `  Y ) ) )
Assertion
Ref Expression
mirhl2  |-  ( ph  ->  X ( K `  A ) Y )

Proof of Theorem mirhl2
StepHypRef Expression
1 mirhl2.1 . . 3  |-  ( ph  ->  X  =/=  A )
2 mirhl2.2 . . 3  |-  ( ph  ->  Y  =/=  A )
3 mirval.p . . . 4  |-  P  =  ( Base `  G
)
4 mirval.i . . . 4  |-  I  =  (Itv `  G )
5 mirval.g . . . 4  |-  ( ph  ->  G  e. TarskiG )
6 mirval.d . . . . 5  |-  .-  =  ( dist `  G )
7 mirval.l . . . . 5  |-  L  =  (LineG `  G )
8 mirval.s . . . . 5  |-  S  =  (pInvG `  G )
9 mirhl.a . . . . 5  |-  ( ph  ->  A  e.  P )
10 mirhl.m . . . . 5  |-  M  =  ( S `  A
)
11 mirhl.y . . . . 5  |-  ( ph  ->  Y  e.  P )
123, 6, 4, 7, 8, 5, 9, 10, 11mircl 25556 . . . 4  |-  ( ph  ->  ( M `  Y
)  e.  P )
13 mirhl.x . . . 4  |-  ( ph  ->  X  e.  P )
145adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( M `  Y )  =  A )  ->  G  e. TarskiG )
159adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( M `  Y )  =  A )  ->  A  e.  P )
1611adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( M `  Y )  =  A )  ->  Y  e.  P )
17 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  ( M `  Y )  =  A )  ->  ( M `  Y )  =  A )
183, 6, 4, 7, 8, 14, 15, 10mircinv 25563 . . . . . . . . 9  |-  ( (
ph  /\  ( M `  Y )  =  A )  ->  ( M `  A )  =  A )
1917, 18eqtr4d 2659 . . . . . . . 8  |-  ( (
ph  /\  ( M `  Y )  =  A )  ->  ( M `  Y )  =  ( M `  A ) )
203, 6, 4, 7, 8, 14, 15, 10, 16, 15, 19mireq 25560 . . . . . . 7  |-  ( (
ph  /\  ( M `  Y )  =  A )  ->  Y  =  A )
2120ex 450 . . . . . 6  |-  ( ph  ->  ( ( M `  Y )  =  A  ->  Y  =  A ) )
2221necon3d 2815 . . . . 5  |-  ( ph  ->  ( Y  =/=  A  ->  ( M `  Y
)  =/=  A ) )
232, 22mpd 15 . . . 4  |-  ( ph  ->  ( M `  Y
)  =/=  A )
24 mirhl2.3 . . . . 5  |-  ( ph  ->  A  e.  ( X I ( M `  Y ) ) )
253, 6, 4, 5, 13, 9, 12, 24tgbtwncom 25383 . . . 4  |-  ( ph  ->  A  e.  ( ( M `  Y ) I X ) )
263, 6, 4, 7, 8, 5, 9, 10, 11mirbtwn 25553 . . . 4  |-  ( ph  ->  A  e.  ( ( M `  Y ) I Y ) )
273, 4, 5, 12, 9, 13, 11, 23, 25, 26tgbtwnconn2 25471 . . 3  |-  ( ph  ->  ( X  e.  ( A I Y )  \/  Y  e.  ( A I X ) ) )
281, 2, 273jca 1242 . 2  |-  ( ph  ->  ( X  =/=  A  /\  Y  =/=  A  /\  ( X  e.  ( A I Y )  \/  Y  e.  ( A I X ) ) ) )
29 mirhl.k . . 3  |-  K  =  (hlG `  G )
303, 4, 29, 13, 11, 9, 5ishlg 25497 . 2  |-  ( ph  ->  ( X ( K `
 A ) Y  <-> 
( X  =/=  A  /\  Y  =/=  A  /\  ( X  e.  ( A I Y )  \/  Y  e.  ( A I X ) ) ) ) )
3128, 30mpbird 247 1  |-  ( ph  ->  X ( K `  A ) Y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  hlGchlg 25495  pInvGcmir 25547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-cgrg 25406  df-hlg 25496  df-mir 25548
This theorem is referenced by:  colhp  25662  sacgr  25722
  Copyright terms: Public domain W3C validator