![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1ocnvfv2 | Structured version Visualization version Unicode version |
Description: The value of the converse value of a one-to-one onto function. (Contributed by NM, 20-May-2004.) |
Ref | Expression |
---|---|
f1ocnvfv2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ococnv2 6163 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | fveq1d 6193 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | adantr 481 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | f1ocnv 6149 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | f1of 6137 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 4, 5 | syl 17 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | fvco3 6275 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 6, 7 | sylan 488 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | fvresi 6439 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | 9 | adantl 482 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 3, 8, 10 | 3eqtr3d 2664 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 |
This theorem is referenced by: f1ocnvfvb 6535 fveqf1o 6557 isocnv 6580 f1oiso2 6602 weniso 6604 ordiso2 8420 cantnfle 8568 cantnfp1lem3 8577 cantnflem1b 8583 cantnflem1d 8585 cantnflem1 8586 cnfcom2lem 8598 cnfcom2 8599 cnfcom3lem 8600 acndom2 8877 iunfictbso 8937 ttukeylem7 9337 fpwwe2lem6 9457 fpwwe2lem7 9458 uzrdglem 12756 uzrdgsuci 12759 fzennn 12767 axdc4uzlem 12782 seqf1olem1 12840 seqf1olem2 12841 hashfz1 13134 seqcoll 13248 seqcoll2 13249 summolem3 14445 summolem2a 14446 ackbijnn 14560 prodmolem3 14663 prodmolem2a 14664 sadcaddlem 15179 sadaddlem 15188 sadasslem 15192 sadeq 15194 phimullem 15484 eulerthlem2 15487 catcisolem 16756 mhmf1o 17345 ghmf1o 17690 f1omvdconj 17866 gsumval3eu 18305 gsumval3 18308 lmhmf1o 19046 fidomndrnglem 19306 basqtop 21514 tgqtop 21515 ordthmeolem 21604 symgtgp 21905 imasf1obl 22293 xrhmeo 22745 ovoliunlem2 23271 vitalilem2 23378 dvcnvlem 23739 dvcnv 23740 dvcnvre 23782 efif1olem4 24291 eff1olem 24294 eflog 24323 dvrelog 24383 dvlog 24397 asinrebnd 24628 sqff1o 24908 lgsqrlem4 25074 cnvmot 25436 f1otrg 25751 f1otrge 25752 axcontlem10 25853 usgrnbcnvfv 26267 wlkiswwlks2lem4 26758 clwlkclwwlklem2a4 26898 cnvunop 28777 unopadj 28778 bracnvbra 28972 abliso 29696 mndpluscn 29972 cvmfolem 31261 cvmliftlem6 31272 f1ocan1fv 33521 ismtycnv 33601 ismtyima 33602 ismtybndlem 33605 rngoisocnv 33780 lautcnvle 35375 lautcvr 35378 lautj 35379 lautm 35380 ltrncnvatb 35424 ltrncnvel 35428 ltrncnv 35432 ltrneq2 35434 cdlemg17h 35956 diainN 36346 diasslssN 36348 doca3N 36416 dihcnvid2 36562 dochocss 36655 mapdcnvid2 36946 rmxyval 37480 mgmhmf1o 41787 |
Copyright terms: Public domain | W3C validator |