MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsringd Structured version   Visualization version   Unicode version

Theorem prdsringd 18612
Description: A product of rings is a ring. (Contributed by Mario Carneiro, 11-Mar-2015.)
Hypotheses
Ref Expression
prdsringd.y  |-  Y  =  ( S X_s R )
prdsringd.i  |-  ( ph  ->  I  e.  W )
prdsringd.s  |-  ( ph  ->  S  e.  V )
prdsringd.r  |-  ( ph  ->  R : I --> Ring )
Assertion
Ref Expression
prdsringd  |-  ( ph  ->  Y  e.  Ring )

Proof of Theorem prdsringd
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsringd.y . . 3  |-  Y  =  ( S X_s R )
2 prdsringd.i . . 3  |-  ( ph  ->  I  e.  W )
3 prdsringd.s . . 3  |-  ( ph  ->  S  e.  V )
4 prdsringd.r . . . 4  |-  ( ph  ->  R : I --> Ring )
5 ringgrp 18552 . . . . 5  |-  ( x  e.  Ring  ->  x  e. 
Grp )
65ssriv 3607 . . . 4  |-  Ring  C_  Grp
7 fss 6056 . . . 4  |-  ( ( R : I --> Ring  /\  Ring  C_ 
Grp )  ->  R : I --> Grp )
84, 6, 7sylancl 694 . . 3  |-  ( ph  ->  R : I --> Grp )
91, 2, 3, 8prdsgrpd 17525 . 2  |-  ( ph  ->  Y  e.  Grp )
10 eqid 2622 . . . 4  |-  ( S
X_s (mulGrp  o.  R )
)  =  ( S
X_s (mulGrp  o.  R )
)
11 mgpf 18559 . . . . 5  |-  (mulGrp  |`  Ring ) : Ring --> Mnd
12 fco2 6059 . . . . 5  |-  ( ( (mulGrp  |`  Ring ) : Ring --> Mnd 
/\  R : I -->
Ring )  ->  (mulGrp  o.  R ) : I --> Mnd )
1311, 4, 12sylancr 695 . . . 4  |-  ( ph  ->  (mulGrp  o.  R ) : I --> Mnd )
1410, 2, 3, 13prdsmndd 17323 . . 3  |-  ( ph  ->  ( S X_s (mulGrp  o.  R )
)  e.  Mnd )
15 eqidd 2623 . . . 4  |-  ( ph  ->  ( Base `  (mulGrp `  Y ) )  =  ( Base `  (mulGrp `  Y ) ) )
16 eqid 2622 . . . . . 6  |-  (mulGrp `  Y )  =  (mulGrp `  Y )
17 ffn 6045 . . . . . . 7  |-  ( R : I --> Ring  ->  R  Fn  I )
184, 17syl 17 . . . . . 6  |-  ( ph  ->  R  Fn  I )
191, 16, 10, 2, 3, 18prdsmgp 18610 . . . . 5  |-  ( ph  ->  ( ( Base `  (mulGrp `  Y ) )  =  ( Base `  ( S X_s (mulGrp  o.  R )
) )  /\  ( +g  `  (mulGrp `  Y
) )  =  ( +g  `  ( S
X_s (mulGrp  o.  R )
) ) ) )
2019simpld 475 . . . 4  |-  ( ph  ->  ( Base `  (mulGrp `  Y ) )  =  ( Base `  ( S X_s (mulGrp  o.  R )
) ) )
2119simprd 479 . . . . 5  |-  ( ph  ->  ( +g  `  (mulGrp `  Y ) )  =  ( +g  `  ( S X_s (mulGrp  o.  R )
) ) )
2221oveqdr 6674 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  (mulGrp `  Y ) )  /\  y  e.  ( Base `  (mulGrp `  Y )
) ) )  -> 
( x ( +g  `  (mulGrp `  Y )
) y )  =  ( x ( +g  `  ( S X_s (mulGrp  o.  R )
) ) y ) )
2315, 20, 22mndpropd 17316 . . 3  |-  ( ph  ->  ( (mulGrp `  Y
)  e.  Mnd  <->  ( S X_s (mulGrp 
o.  R ) )  e.  Mnd ) )
2414, 23mpbird 247 . 2  |-  ( ph  ->  (mulGrp `  Y )  e.  Mnd )
254adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  R :
I --> Ring )
2625ffvelrnda 6359 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  ( R `  w )  e.  Ring )
27 eqid 2622 . . . . . . . . 9  |-  ( Base `  Y )  =  (
Base `  Y )
283adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  S  e.  V )
2928adantr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  S  e.  V )
302adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  I  e.  W )
3130adantr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  I  e.  W )
3218adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  R  Fn  I )
3332adantr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  R  Fn  I )
34 simplr1 1103 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  x  e.  ( Base `  Y
) )
35 simpr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  w  e.  I )
361, 27, 29, 31, 33, 34, 35prdsbasprj 16132 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
x `  w )  e.  ( Base `  ( R `  w )
) )
37 simpr2 1068 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  y  e.  ( Base `  Y )
)
3837adantr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  y  e.  ( Base `  Y
) )
391, 27, 29, 31, 33, 38, 35prdsbasprj 16132 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
y `  w )  e.  ( Base `  ( R `  w )
) )
40 simpr3 1069 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  z  e.  ( Base `  Y )
)
4140adantr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  z  e.  ( Base `  Y
) )
421, 27, 29, 31, 33, 41, 35prdsbasprj 16132 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
z `  w )  e.  ( Base `  ( R `  w )
) )
43 eqid 2622 . . . . . . . . 9  |-  ( Base `  ( R `  w
) )  =  (
Base `  ( R `  w ) )
44 eqid 2622 . . . . . . . . 9  |-  ( +g  `  ( R `  w
) )  =  ( +g  `  ( R `
 w ) )
45 eqid 2622 . . . . . . . . 9  |-  ( .r
`  ( R `  w ) )  =  ( .r `  ( R `  w )
)
4643, 44, 45ringdi 18566 . . . . . . . 8  |-  ( ( ( R `  w
)  e.  Ring  /\  (
( x `  w
)  e.  ( Base `  ( R `  w
) )  /\  (
y `  w )  e.  ( Base `  ( R `  w )
)  /\  ( z `  w )  e.  (
Base `  ( R `  w ) ) ) )  ->  ( (
x `  w )
( .r `  ( R `  w )
) ( ( y `
 w ) ( +g  `  ( R `
 w ) ) ( z `  w
) ) )  =  ( ( ( x `
 w ) ( .r `  ( R `
 w ) ) ( y `  w
) ) ( +g  `  ( R `  w
) ) ( ( x `  w ) ( .r `  ( R `  w )
) ( z `  w ) ) ) )
4726, 36, 39, 42, 46syl13anc 1328 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
( x `  w
) ( .r `  ( R `  w ) ) ( ( y `
 w ) ( +g  `  ( R `
 w ) ) ( z `  w
) ) )  =  ( ( ( x `
 w ) ( .r `  ( R `
 w ) ) ( y `  w
) ) ( +g  `  ( R `  w
) ) ( ( x `  w ) ( .r `  ( R `  w )
) ( z `  w ) ) ) )
48 eqid 2622 . . . . . . . . 9  |-  ( +g  `  Y )  =  ( +g  `  Y )
491, 27, 29, 31, 33, 38, 41, 48, 35prdsplusgfval 16134 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
( y ( +g  `  Y ) z ) `
 w )  =  ( ( y `  w ) ( +g  `  ( R `  w
) ) ( z `
 w ) ) )
5049oveq2d 6666 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
( x `  w
) ( .r `  ( R `  w ) ) ( ( y ( +g  `  Y
) z ) `  w ) )  =  ( ( x `  w ) ( .r
`  ( R `  w ) ) ( ( y `  w
) ( +g  `  ( R `  w )
) ( z `  w ) ) ) )
51 eqid 2622 . . . . . . . . 9  |-  ( .r
`  Y )  =  ( .r `  Y
)
521, 27, 29, 31, 33, 34, 38, 51, 35prdsmulrfval 16136 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
( x ( .r
`  Y ) y ) `  w )  =  ( ( x `
 w ) ( .r `  ( R `
 w ) ) ( y `  w
) ) )
531, 27, 29, 31, 33, 34, 41, 51, 35prdsmulrfval 16136 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
( x ( .r
`  Y ) z ) `  w )  =  ( ( x `
 w ) ( .r `  ( R `
 w ) ) ( z `  w
) ) )
5452, 53oveq12d 6668 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
( ( x ( .r `  Y ) y ) `  w
) ( +g  `  ( R `  w )
) ( ( x ( .r `  Y
) z ) `  w ) )  =  ( ( ( x `
 w ) ( .r `  ( R `
 w ) ) ( y `  w
) ) ( +g  `  ( R `  w
) ) ( ( x `  w ) ( .r `  ( R `  w )
) ( z `  w ) ) ) )
5547, 50, 543eqtr4d 2666 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
( x `  w
) ( .r `  ( R `  w ) ) ( ( y ( +g  `  Y
) z ) `  w ) )  =  ( ( ( x ( .r `  Y
) y ) `  w ) ( +g  `  ( R `  w
) ) ( ( x ( .r `  Y ) z ) `
 w ) ) )
5655mpteq2dva 4744 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( w  e.  I  |->  ( ( x `  w ) ( .r `  ( R `  w )
) ( ( y ( +g  `  Y
) z ) `  w ) ) )  =  ( w  e.  I  |->  ( ( ( x ( .r `  Y ) y ) `
 w ) ( +g  `  ( R `
 w ) ) ( ( x ( .r `  Y ) z ) `  w
) ) ) )
57 simpr1 1067 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  x  e.  ( Base `  Y )
)
58 ringmnd 18556 . . . . . . . . . 10  |-  ( x  e.  Ring  ->  x  e. 
Mnd )
5958ssriv 3607 . . . . . . . . 9  |-  Ring  C_  Mnd
60 fss 6056 . . . . . . . . 9  |-  ( ( R : I --> Ring  /\  Ring  C_ 
Mnd )  ->  R : I --> Mnd )
614, 59, 60sylancl 694 . . . . . . . 8  |-  ( ph  ->  R : I --> Mnd )
6261adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  R :
I --> Mnd )
631, 27, 48, 28, 30, 62, 37, 40prdsplusgcl 17321 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( y
( +g  `  Y ) z )  e.  (
Base `  Y )
)
641, 27, 28, 30, 32, 57, 63, 51prdsmulrval 16135 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( x
( .r `  Y
) ( y ( +g  `  Y ) z ) )  =  ( w  e.  I  |->  ( ( x `  w ) ( .r
`  ( R `  w ) ) ( ( y ( +g  `  Y ) z ) `
 w ) ) ) )
651, 27, 51, 28, 30, 25, 57, 37prdsmulrcl 18611 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( x
( .r `  Y
) y )  e.  ( Base `  Y
) )
661, 27, 51, 28, 30, 25, 57, 40prdsmulrcl 18611 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( x
( .r `  Y
) z )  e.  ( Base `  Y
) )
671, 27, 28, 30, 32, 65, 66, 48prdsplusgval 16133 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( (
x ( .r `  Y ) y ) ( +g  `  Y
) ( x ( .r `  Y ) z ) )  =  ( w  e.  I  |->  ( ( ( x ( .r `  Y
) y ) `  w ) ( +g  `  ( R `  w
) ) ( ( x ( .r `  Y ) z ) `
 w ) ) ) )
6856, 64, 673eqtr4d 2666 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( x
( .r `  Y
) ( y ( +g  `  Y ) z ) )  =  ( ( x ( .r `  Y ) y ) ( +g  `  Y ) ( x ( .r `  Y
) z ) ) )
6943, 44, 45ringdir 18567 . . . . . . . 8  |-  ( ( ( R `  w
)  e.  Ring  /\  (
( x `  w
)  e.  ( Base `  ( R `  w
) )  /\  (
y `  w )  e.  ( Base `  ( R `  w )
)  /\  ( z `  w )  e.  (
Base `  ( R `  w ) ) ) )  ->  ( (
( x `  w
) ( +g  `  ( R `  w )
) ( y `  w ) ) ( .r `  ( R `
 w ) ) ( z `  w
) )  =  ( ( ( x `  w ) ( .r
`  ( R `  w ) ) ( z `  w ) ) ( +g  `  ( R `  w )
) ( ( y `
 w ) ( .r `  ( R `
 w ) ) ( z `  w
) ) ) )
7026, 36, 39, 42, 69syl13anc 1328 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
( ( x `  w ) ( +g  `  ( R `  w
) ) ( y `
 w ) ) ( .r `  ( R `  w )
) ( z `  w ) )  =  ( ( ( x `
 w ) ( .r `  ( R `
 w ) ) ( z `  w
) ) ( +g  `  ( R `  w
) ) ( ( y `  w ) ( .r `  ( R `  w )
) ( z `  w ) ) ) )
711, 27, 29, 31, 33, 34, 38, 48, 35prdsplusgfval 16134 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
( x ( +g  `  Y ) y ) `
 w )  =  ( ( x `  w ) ( +g  `  ( R `  w
) ) ( y `
 w ) ) )
7271oveq1d 6665 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
( ( x ( +g  `  Y ) y ) `  w
) ( .r `  ( R `  w ) ) ( z `  w ) )  =  ( ( ( x `
 w ) ( +g  `  ( R `
 w ) ) ( y `  w
) ) ( .r
`  ( R `  w ) ) ( z `  w ) ) )
731, 27, 29, 31, 33, 38, 41, 51, 35prdsmulrfval 16136 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
( y ( .r
`  Y ) z ) `  w )  =  ( ( y `
 w ) ( .r `  ( R `
 w ) ) ( z `  w
) ) )
7453, 73oveq12d 6668 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
( ( x ( .r `  Y ) z ) `  w
) ( +g  `  ( R `  w )
) ( ( y ( .r `  Y
) z ) `  w ) )  =  ( ( ( x `
 w ) ( .r `  ( R `
 w ) ) ( z `  w
) ) ( +g  `  ( R `  w
) ) ( ( y `  w ) ( .r `  ( R `  w )
) ( z `  w ) ) ) )
7570, 72, 743eqtr4d 2666 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
( ( x ( +g  `  Y ) y ) `  w
) ( .r `  ( R `  w ) ) ( z `  w ) )  =  ( ( ( x ( .r `  Y
) z ) `  w ) ( +g  `  ( R `  w
) ) ( ( y ( .r `  Y ) z ) `
 w ) ) )
7675mpteq2dva 4744 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( w  e.  I  |->  ( ( ( x ( +g  `  Y ) y ) `
 w ) ( .r `  ( R `
 w ) ) ( z `  w
) ) )  =  ( w  e.  I  |->  ( ( ( x ( .r `  Y
) z ) `  w ) ( +g  `  ( R `  w
) ) ( ( y ( .r `  Y ) z ) `
 w ) ) ) )
771, 27, 48, 28, 30, 62, 57, 37prdsplusgcl 17321 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( x
( +g  `  Y ) y )  e.  (
Base `  Y )
)
781, 27, 28, 30, 32, 77, 40, 51prdsmulrval 16135 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( (
x ( +g  `  Y
) y ) ( .r `  Y ) z )  =  ( w  e.  I  |->  ( ( ( x ( +g  `  Y ) y ) `  w
) ( .r `  ( R `  w ) ) ( z `  w ) ) ) )
791, 27, 51, 28, 30, 25, 37, 40prdsmulrcl 18611 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( y
( .r `  Y
) z )  e.  ( Base `  Y
) )
801, 27, 28, 30, 32, 66, 79, 48prdsplusgval 16133 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( (
x ( .r `  Y ) z ) ( +g  `  Y
) ( y ( .r `  Y ) z ) )  =  ( w  e.  I  |->  ( ( ( x ( .r `  Y
) z ) `  w ) ( +g  `  ( R `  w
) ) ( ( y ( .r `  Y ) z ) `
 w ) ) ) )
8176, 78, 803eqtr4d 2666 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( (
x ( +g  `  Y
) y ) ( .r `  Y ) z )  =  ( ( x ( .r
`  Y ) z ) ( +g  `  Y
) ( y ( .r `  Y ) z ) ) )
8268, 81jca 554 . . 3  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( (
x ( .r `  Y ) ( y ( +g  `  Y
) z ) )  =  ( ( x ( .r `  Y
) y ) ( +g  `  Y ) ( x ( .r
`  Y ) z ) )  /\  (
( x ( +g  `  Y ) y ) ( .r `  Y
) z )  =  ( ( x ( .r `  Y ) z ) ( +g  `  Y ) ( y ( .r `  Y
) z ) ) ) )
8382ralrimivvva 2972 . 2  |-  ( ph  ->  A. x  e.  (
Base `  Y ) A. y  e.  ( Base `  Y ) A. z  e.  ( Base `  Y ) ( ( x ( .r `  Y ) ( y ( +g  `  Y
) z ) )  =  ( ( x ( .r `  Y
) y ) ( +g  `  Y ) ( x ( .r
`  Y ) z ) )  /\  (
( x ( +g  `  Y ) y ) ( .r `  Y
) z )  =  ( ( x ( .r `  Y ) z ) ( +g  `  Y ) ( y ( .r `  Y
) z ) ) ) )
8427, 16, 48, 51isring 18551 . 2  |-  ( Y  e.  Ring  <->  ( Y  e. 
Grp  /\  (mulGrp `  Y
)  e.  Mnd  /\  A. x  e.  ( Base `  Y ) A. y  e.  ( Base `  Y
) A. z  e.  ( Base `  Y
) ( ( x ( .r `  Y
) ( y ( +g  `  Y ) z ) )  =  ( ( x ( .r `  Y ) y ) ( +g  `  Y ) ( x ( .r `  Y
) z ) )  /\  ( ( x ( +g  `  Y
) y ) ( .r `  Y ) z )  =  ( ( x ( .r
`  Y ) z ) ( +g  `  Y
) ( y ( .r `  Y ) z ) ) ) ) )
859, 24, 83, 84syl3anbrc 1246 1  |-  ( ph  ->  Y  e.  Ring )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574    |-> cmpt 4729    |` cres 5116    o. ccom 5118    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   .rcmulr 15942   X_scprds 16106   Mndcmnd 17294   Grpcgrp 17422  mulGrpcmgp 18489   Ringcrg 18547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-prds 16108  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-mgp 18490  df-ring 18549
This theorem is referenced by:  prdscrngd  18613  pwsring  18615
  Copyright terms: Public domain W3C validator