MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mopnval Structured version   Visualization version   Unicode version

Theorem mopnval 22243
Description: An open set is a subset of a metric space which includes a ball around each of its points. Definition 1.3-2 of [Kreyszig] p. 18. The object  ( MetOpen `  D
) is the family of all open sets in the metric space determined by the metric  D. By mopntop 22245, the open sets of a metric space form a topology 
J, whose base set is 
U. J by mopnuni 22246. (Contributed by NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Hypothesis
Ref Expression
mopnval.1  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
mopnval  |-  ( D  e.  ( *Met `  X )  ->  J  =  ( topGen `  ran  ( ball `  D )
) )

Proof of Theorem mopnval
Dummy variable  d is distinct from all other variables.
StepHypRef Expression
1 fvssunirn 6217 . . 3  |-  ( *Met `  X ) 
C_  U. ran  *Met
21sseli 3599 . 2  |-  ( D  e.  ( *Met `  X )  ->  D  e.  U. ran  *Met )
3 mopnval.1 . . 3  |-  J  =  ( MetOpen `  D )
4 fveq2 6191 . . . . . 6  |-  ( d  =  D  ->  ( ball `  d )  =  ( ball `  D
) )
54rneqd 5353 . . . . 5  |-  ( d  =  D  ->  ran  ( ball `  d )  =  ran  ( ball `  D
) )
65fveq2d 6195 . . . 4  |-  ( d  =  D  ->  ( topGen `
 ran  ( ball `  d ) )  =  ( topGen `  ran  ( ball `  D ) ) )
7 df-mopn 19742 . . . 4  |-  MetOpen  =  ( d  e.  U. ran  *Met  |->  ( topGen `  ran  ( ball `  d )
) )
8 fvex 6201 . . . 4  |-  ( topGen ` 
ran  ( ball `  D
) )  e.  _V
96, 7, 8fvmpt 6282 . . 3  |-  ( D  e.  U. ran  *Met  ->  ( MetOpen `  D
)  =  ( topGen ` 
ran  ( ball `  D
) ) )
103, 9syl5eq 2668 . 2  |-  ( D  e.  U. ran  *Met  ->  J  =  (
topGen `  ran  ( ball `  D ) ) )
112, 10syl 17 1  |-  ( D  e.  ( *Met `  X )  ->  J  =  ( topGen `  ran  ( ball `  D )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   U.cuni 4436   ran crn 5115   ` cfv 5888   topGenctg 16098   *Metcxmt 19731   ballcbl 19733   MetOpencmopn 19736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-mopn 19742
This theorem is referenced by:  mopntopon  22244  elmopn  22247  imasf1oxms  22294  blssopn  22300  metss  22313  prdsxmslem2  22334  metcnp3  22345  xmetutop  22373  tgioo  22599  ismtyhmeolem  33603
  Copyright terms: Public domain W3C validator