MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metcnp3 Structured version   Visualization version   Unicode version

Theorem metcnp3 22345
Description: Two ways to express that  F is continuous at  P for metric spaces. Proposition 14-4.2 of [Gleason] p. 240. (Contributed by NM, 17-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
metcn.2  |-  J  =  ( MetOpen `  C )
metcn.4  |-  K  =  ( MetOpen `  D )
Assertion
Ref Expression
metcnp3  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y ) ) ) )
Distinct variable groups:    y, z, F    y, J, z    y, K, z    y, X, z   
y, Y, z    y, C, z    y, D, z   
y, P, z

Proof of Theorem metcnp3
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metcn.2 . . . . 5  |-  J  =  ( MetOpen `  C )
21mopntopon 22244 . . . 4  |-  ( C  e.  ( *Met `  X )  ->  J  e.  (TopOn `  X )
)
323ad2ant1 1082 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  ->  J  e.  (TopOn `  X )
)
4 metcn.4 . . . . 5  |-  K  =  ( MetOpen `  D )
54mopnval 22243 . . . 4  |-  ( D  e.  ( *Met `  Y )  ->  K  =  ( topGen `  ran  ( ball `  D )
) )
653ad2ant2 1083 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  ->  K  =  ( topGen `  ran  ( ball `  D )
) )
74mopntopon 22244 . . . 4  |-  ( D  e.  ( *Met `  Y )  ->  K  e.  (TopOn `  Y )
)
873ad2ant2 1083 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  ->  K  e.  (TopOn `  Y )
)
9 simp3 1063 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  ->  P  e.  X )
103, 6, 8, 9tgcnp 21057 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. u  e.  ran  ( ball `  D ) ( ( F `  P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) ) ) ) )
11 simpll2 1101 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  ->  D  e.  ( *Met `  Y ) )
12 simplr 792 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  ->  F : X --> Y )
13 simpll3 1102 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  ->  P  e.  X )
1412, 13ffvelrnd 6360 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( F `  P
)  e.  Y )
15 simpr 477 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
y  e.  RR+ )
16 blcntr 22218 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  Y )  /\  ( F `  P )  e.  Y  /\  y  e.  RR+ )  ->  ( F `  P
)  e.  ( ( F `  P ) ( ball `  D
) y ) )
1711, 14, 15, 16syl3anc 1326 . . . . . . 7  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( F `  P
)  e.  ( ( F `  P ) ( ball `  D
) y ) )
18 rpxr 11840 . . . . . . . . . 10  |-  ( y  e.  RR+  ->  y  e. 
RR* )
1918adantl 482 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
y  e.  RR* )
20 blelrn 22222 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  Y )  /\  ( F `  P )  e.  Y  /\  y  e.  RR* )  ->  ( ( F `  P ) ( ball `  D ) y )  e.  ran  ( ball `  D ) )
2111, 14, 19, 20syl3anc 1326 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( ( F `  P ) ( ball `  D ) y )  e.  ran  ( ball `  D ) )
22 eleq2 2690 . . . . . . . . . 10  |-  ( u  =  ( ( F `
 P ) (
ball `  D )
y )  ->  (
( F `  P
)  e.  u  <->  ( F `  P )  e.  ( ( F `  P
) ( ball `  D
) y ) ) )
23 sseq2 3627 . . . . . . . . . . . 12  |-  ( u  =  ( ( F `
 P ) (
ball `  D )
y )  ->  (
( F " v
)  C_  u  <->  ( F " v )  C_  (
( F `  P
) ( ball `  D
) y ) ) )
2423anbi2d 740 . . . . . . . . . . 11  |-  ( u  =  ( ( F `
 P ) (
ball `  D )
y )  ->  (
( P  e.  v  /\  ( F "
v )  C_  u
)  <->  ( P  e.  v  /\  ( F
" v )  C_  ( ( F `  P ) ( ball `  D ) y ) ) ) )
2524rexbidv 3052 . . . . . . . . . 10  |-  ( u  =  ( ( F `
 P ) (
ball `  D )
y )  ->  ( E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  u )  <->  E. v  e.  J  ( P  e.  v  /\  ( F " v ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) ) )
2622, 25imbi12d 334 . . . . . . . . 9  |-  ( u  =  ( ( F `
 P ) (
ball `  D )
y )  ->  (
( ( F `  P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  u )
)  <->  ( ( F `
 P )  e.  ( ( F `  P ) ( ball `  D ) y )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  ( ( F `  P )
( ball `  D )
y ) ) ) ) )
2726rspcv 3305 . . . . . . . 8  |-  ( ( ( F `  P
) ( ball `  D
) y )  e. 
ran  ( ball `  D
)  ->  ( A. u  e.  ran  ( ball `  D ) ( ( F `  P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) )  -> 
( ( F `  P )  e.  ( ( F `  P
) ( ball `  D
) y )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  ( ( F `  P )
( ball `  D )
y ) ) ) ) )
2821, 27syl 17 . . . . . . 7  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( A. u  e. 
ran  ( ball `  D
) ( ( F `
 P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) )  -> 
( ( F `  P )  e.  ( ( F `  P
) ( ball `  D
) y )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  ( ( F `  P )
( ball `  D )
y ) ) ) ) )
2917, 28mpid 44 . . . . . 6  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( A. u  e. 
ran  ( ball `  D
) ( ( F `
 P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  ( ( F `  P )
( ball `  D )
y ) ) ) )
30 simpl1 1064 . . . . . . . . . . . 12  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  ->  C  e.  ( *Met `  X ) )
3130ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  v  e.  J ) )  /\  P  e.  v )  ->  C  e.  ( *Met `  X ) )
32 simplrr 801 . . . . . . . . . . 11  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  v  e.  J ) )  /\  P  e.  v )  ->  v  e.  J )
33 simpr 477 . . . . . . . . . . 11  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  v  e.  J ) )  /\  P  e.  v )  ->  P  e.  v )
341mopni2 22298 . . . . . . . . . . 11  |-  ( ( C  e.  ( *Met `  X )  /\  v  e.  J  /\  P  e.  v
)  ->  E. z  e.  RR+  ( P (
ball `  C )
z )  C_  v
)
3531, 32, 33, 34syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  v  e.  J ) )  /\  P  e.  v )  ->  E. z  e.  RR+  ( P (
ball `  C )
z )  C_  v
)
36 sstr2 3610 . . . . . . . . . . . 12  |-  ( ( F " ( P ( ball `  C
) z ) ) 
C_  ( F "
v )  ->  (
( F " v
)  C_  ( ( F `  P )
( ball `  D )
y )  ->  ( F " ( P (
ball `  C )
z ) )  C_  ( ( F `  P ) ( ball `  D ) y ) ) )
37 imass2 5501 . . . . . . . . . . . 12  |-  ( ( P ( ball `  C
) z )  C_  v  ->  ( F "
( P ( ball `  C ) z ) )  C_  ( F " v ) )
3836, 37syl11 33 . . . . . . . . . . 11  |-  ( ( F " v ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  ->  (
( P ( ball `  C ) z ) 
C_  v  ->  ( F " ( P (
ball `  C )
z ) )  C_  ( ( F `  P ) ( ball `  D ) y ) ) )
3938reximdv 3016 . . . . . . . . . 10  |-  ( ( F " v ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  ->  ( E. z  e.  RR+  ( P ( ball `  C
) z )  C_  v  ->  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) )
4035, 39syl5com 31 . . . . . . . . 9  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  v  e.  J ) )  /\  P  e.  v )  ->  (
( F " v
)  C_  ( ( F `  P )
( ball `  D )
y )  ->  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y ) ) )
4140expimpd 629 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  v  e.  J ) )  ->  ( ( P  e.  v  /\  ( F " v ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) )  ->  E. z  e.  RR+  ( F " ( P (
ball `  C )
z ) )  C_  ( ( F `  P ) ( ball `  D ) y ) ) )
4241expr 643 . . . . . . 7  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( v  e.  J  ->  ( ( P  e.  v  /\  ( F
" v )  C_  ( ( F `  P ) ( ball `  D ) y ) )  ->  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y ) ) ) )
4342rexlimdv 3030 . . . . . 6  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( E. v  e.  J  ( P  e.  v  /\  ( F
" v )  C_  ( ( F `  P ) ( ball `  D ) y ) )  ->  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y ) ) )
4429, 43syld 47 . . . . 5  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( A. u  e. 
ran  ( ball `  D
) ( ( F `
 P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) )  ->  E. z  e.  RR+  ( F " ( P (
ball `  C )
z ) )  C_  ( ( F `  P ) ( ball `  D ) y ) ) )
4544ralrimdva 2969 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( A. u  e. 
ran  ( ball `  D
) ( ( F `
 P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) )  ->  A. y  e.  RR+  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y ) ) )
46 simpl2 1065 . . . . . . . . 9  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  ->  D  e.  ( *Met `  Y ) )
47 blss 22230 . . . . . . . . . 10  |-  ( ( D  e.  ( *Met `  Y )  /\  u  e.  ran  ( ball `  D )  /\  ( F `  P
)  e.  u )  ->  E. y  e.  RR+  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )
48473expib 1268 . . . . . . . . 9  |-  ( D  e.  ( *Met `  Y )  ->  (
( u  e.  ran  ( ball `  D )  /\  ( F `  P
)  e.  u )  ->  E. y  e.  RR+  ( ( F `  P ) ( ball `  D ) y ) 
C_  u ) )
4946, 48syl 17 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( ( u  e. 
ran  ( ball `  D
)  /\  ( F `  P )  e.  u
)  ->  E. y  e.  RR+  ( ( F `
 P ) (
ball `  D )
y )  C_  u
) )
50 r19.29r 3073 . . . . . . . . . 10  |-  ( ( E. y  e.  RR+  ( ( F `  P ) ( ball `  D ) y ) 
C_  u  /\  A. y  e.  RR+  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y ) )  ->  E. y  e.  RR+  (
( ( F `  P ) ( ball `  D ) y ) 
C_  u  /\  E. z  e.  RR+  ( F
" ( P (
ball `  C )
z ) )  C_  ( ( F `  P ) ( ball `  D ) y ) ) )
5130ad3antrrr 766 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )  /\  ( z  e.  RR+  /\  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) )  ->  C  e.  ( *Met `  X
) )
5213ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )  /\  ( z  e.  RR+  /\  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) )  ->  P  e.  X
)
53 rpxr 11840 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  RR+  ->  z  e. 
RR* )
5453ad2antrl 764 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )  /\  ( z  e.  RR+  /\  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) )  ->  z  e.  RR* )
551blopn 22305 . . . . . . . . . . . . . . . 16  |-  ( ( C  e.  ( *Met `  X )  /\  P  e.  X  /\  z  e.  RR* )  ->  ( P ( ball `  C ) z )  e.  J )
5651, 52, 54, 55syl3anc 1326 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )  /\  ( z  e.  RR+  /\  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) )  ->  ( P (
ball `  C )
z )  e.  J
)
57 simprl 794 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )  /\  ( z  e.  RR+  /\  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) )  ->  z  e.  RR+ )
58 blcntr 22218 . . . . . . . . . . . . . . . 16  |-  ( ( C  e.  ( *Met `  X )  /\  P  e.  X  /\  z  e.  RR+ )  ->  P  e.  ( P ( ball `  C
) z ) )
5951, 52, 57, 58syl3anc 1326 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )  /\  ( z  e.  RR+  /\  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) )  ->  P  e.  ( P ( ball `  C
) z ) )
60 sstr 3611 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  /\  (
( F `  P
) ( ball `  D
) y )  C_  u )  ->  ( F " ( P (
ball `  C )
z ) )  C_  u )
6160ad2ant2l 782 . . . . . . . . . . . . . . . 16  |-  ( ( ( z  e.  RR+  /\  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) )  /\  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u ) )  ->  ( F "
( P ( ball `  C ) z ) )  C_  u )
6261ancoms 469 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )  /\  ( z  e.  RR+  /\  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) )  ->  ( F "
( P ( ball `  C ) z ) )  C_  u )
63 eleq2 2690 . . . . . . . . . . . . . . . . 17  |-  ( v  =  ( P (
ball `  C )
z )  ->  ( P  e.  v  <->  P  e.  ( P ( ball `  C
) z ) ) )
64 imaeq2 5462 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  ( P (
ball `  C )
z )  ->  ( F " v )  =  ( F " ( P ( ball `  C
) z ) ) )
6564sseq1d 3632 . . . . . . . . . . . . . . . . 17  |-  ( v  =  ( P (
ball `  C )
z )  ->  (
( F " v
)  C_  u  <->  ( F " ( P ( ball `  C ) z ) )  C_  u )
)
6663, 65anbi12d 747 . . . . . . . . . . . . . . . 16  |-  ( v  =  ( P (
ball `  C )
z )  ->  (
( P  e.  v  /\  ( F "
v )  C_  u
)  <->  ( P  e.  ( P ( ball `  C ) z )  /\  ( F "
( P ( ball `  C ) z ) )  C_  u )
) )
6766rspcev 3309 . . . . . . . . . . . . . . 15  |-  ( ( ( P ( ball `  C ) z )  e.  J  /\  ( P  e.  ( P
( ball `  C )
z )  /\  ( F " ( P (
ball `  C )
z ) )  C_  u ) )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  u )
)
6856, 59, 62, 67syl12anc 1324 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )  /\  ( z  e.  RR+  /\  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  u )
)
6968expr 643 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )  /\  z  e.  RR+ )  -> 
( ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) ) )
7069rexlimdva 3031 . . . . . . . . . . . 12  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )  -> 
( E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) ) )
7170expimpd 629 . . . . . . . . . . 11  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( ( ( ( F `  P ) ( ball `  D
) y )  C_  u  /\  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  u )
) )
7271rexlimdva 3031 . . . . . . . . . 10  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( E. y  e.  RR+  ( ( ( F `
 P ) (
ball `  D )
y )  C_  u  /\  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  u )
) )
7350, 72syl5 34 . . . . . . . . 9  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( ( E. y  e.  RR+  ( ( F `
 P ) (
ball `  D )
y )  C_  u  /\  A. y  e.  RR+  E. z  e.  RR+  ( F " ( P (
ball `  C )
z ) )  C_  ( ( F `  P ) ( ball `  D ) y ) )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) ) )
7473expd 452 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( E. y  e.  RR+  ( ( F `  P ) ( ball `  D ) y ) 
C_  u  ->  ( A. y  e.  RR+  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) ) ) )
7549, 74syld 47 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( ( u  e. 
ran  ( ball `  D
)  /\  ( F `  P )  e.  u
)  ->  ( A. y  e.  RR+  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) ) ) )
7675com23 86 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( A. y  e.  RR+  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  ->  (
( u  e.  ran  ( ball `  D )  /\  ( F `  P
)  e.  u )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  u )
) ) )
7776exp4a 633 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( A. y  e.  RR+  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  ->  (
u  e.  ran  ( ball `  D )  -> 
( ( F `  P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  u )
) ) ) )
7877ralrimdv 2968 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( A. y  e.  RR+  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  ->  A. u  e.  ran  ( ball `  D
) ( ( F `
 P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) ) ) )
7945, 78impbid 202 . . 3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( A. u  e. 
ran  ( ball `  D
) ( ( F `
 P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) )  <->  A. y  e.  RR+  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) )
8079pm5.32da 673 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  ->  (
( F : X --> Y  /\  A. u  e. 
ran  ( ball `  D
) ( ( F `
 P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) ) )  <-> 
( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) ) )
8110, 80bitrd 268 1  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   ran crn 5115   "cima 5117   -->wf 5884   ` cfv 5888  (class class class)co 6650   RR*cxr 10073   RR+crp 11832   topGenctg 16098   *Metcxmt 19731   ballcbl 19733   MetOpencmopn 19736  TopOnctopon 20715    CnP ccnp 21029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cnp 21032
This theorem is referenced by:  metcnp  22346
  Copyright terms: Public domain W3C validator