MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasf1oxms Structured version   Visualization version   Unicode version

Theorem imasf1oxms 22294
Description: The image of a metric space is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
imasf1obl.u  |-  ( ph  ->  U  =  ( F 
"s  R ) )
imasf1obl.v  |-  ( ph  ->  V  =  ( Base `  R ) )
imasf1obl.f  |-  ( ph  ->  F : V -1-1-onto-> B )
imasf1oxms.r  |-  ( ph  ->  R  e.  *MetSp )
Assertion
Ref Expression
imasf1oxms  |-  ( ph  ->  U  e.  *MetSp )

Proof of Theorem imasf1oxms
Dummy variables  x  r  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasf1obl.u . . . . 5  |-  ( ph  ->  U  =  ( F 
"s  R ) )
2 imasf1obl.v . . . . 5  |-  ( ph  ->  V  =  ( Base `  R ) )
3 imasf1obl.f . . . . 5  |-  ( ph  ->  F : V -1-1-onto-> B )
4 imasf1oxms.r . . . . 5  |-  ( ph  ->  R  e.  *MetSp )
5 eqid 2622 . . . . 5  |-  ( (
dist `  R )  |`  ( V  X.  V
) )  =  ( ( dist `  R
)  |`  ( V  X.  V ) )
6 eqid 2622 . . . . 5  |-  ( dist `  U )  =  (
dist `  U )
7 eqid 2622 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
8 eqid 2622 . . . . . . . 8  |-  ( (
dist `  R )  |`  ( ( Base `  R
)  X.  ( Base `  R ) ) )  =  ( ( dist `  R )  |`  (
( Base `  R )  X.  ( Base `  R
) ) )
97, 8xmsxmet 22261 . . . . . . 7  |-  ( R  e.  *MetSp  ->  (
( dist `  R )  |`  ( ( Base `  R
)  X.  ( Base `  R ) ) )  e.  ( *Met `  ( Base `  R
) ) )
104, 9syl 17 . . . . . 6  |-  ( ph  ->  ( ( dist `  R
)  |`  ( ( Base `  R )  X.  ( Base `  R ) ) )  e.  ( *Met `  ( Base `  R ) ) )
112sqxpeqd 5141 . . . . . . 7  |-  ( ph  ->  ( V  X.  V
)  =  ( (
Base `  R )  X.  ( Base `  R
) ) )
1211reseq2d 5396 . . . . . 6  |-  ( ph  ->  ( ( dist `  R
)  |`  ( V  X.  V ) )  =  ( ( dist `  R
)  |`  ( ( Base `  R )  X.  ( Base `  R ) ) ) )
132fveq2d 6195 . . . . . 6  |-  ( ph  ->  ( *Met `  V )  =  ( *Met `  ( Base `  R ) ) )
1410, 12, 133eltr4d 2716 . . . . 5  |-  ( ph  ->  ( ( dist `  R
)  |`  ( V  X.  V ) )  e.  ( *Met `  V ) )
151, 2, 3, 4, 5, 6, 14imasf1oxmet 22180 . . . 4  |-  ( ph  ->  ( dist `  U
)  e.  ( *Met `  B ) )
16 f1ofo 6144 . . . . . . 7  |-  ( F : V -1-1-onto-> B  ->  F : V -onto-> B )
173, 16syl 17 . . . . . 6  |-  ( ph  ->  F : V -onto-> B
)
181, 2, 17, 4imasbas 16172 . . . . 5  |-  ( ph  ->  B  =  ( Base `  U ) )
1918fveq2d 6195 . . . 4  |-  ( ph  ->  ( *Met `  B )  =  ( *Met `  ( Base `  U ) ) )
2015, 19eleqtrd 2703 . . 3  |-  ( ph  ->  ( dist `  U
)  e.  ( *Met `  ( Base `  U ) ) )
21 ssid 3624 . . 3  |-  ( Base `  U )  C_  ( Base `  U )
22 xmetres2 22166 . . 3  |-  ( ( ( dist `  U
)  e.  ( *Met `  ( Base `  U ) )  /\  ( Base `  U )  C_  ( Base `  U
) )  ->  (
( dist `  U )  |`  ( ( Base `  U
)  X.  ( Base `  U ) ) )  e.  ( *Met `  ( Base `  U
) ) )
2320, 21, 22sylancl 694 . 2  |-  ( ph  ->  ( ( dist `  U
)  |`  ( ( Base `  U )  X.  ( Base `  U ) ) )  e.  ( *Met `  ( Base `  U ) ) )
24 eqid 2622 . . . 4  |-  ( TopOpen `  R )  =  (
TopOpen `  R )
25 eqid 2622 . . . 4  |-  ( TopOpen `  U )  =  (
TopOpen `  U )
261, 2, 17, 4, 24, 25imastopn 21523 . . 3  |-  ( ph  ->  ( TopOpen `  U )  =  ( ( TopOpen `  R ) qTop  F )
)
2724, 7, 8xmstopn 22256 . . . . . 6  |-  ( R  e.  *MetSp  ->  ( TopOpen
`  R )  =  ( MetOpen `  ( ( dist `  R )  |`  ( ( Base `  R
)  X.  ( Base `  R ) ) ) ) )
284, 27syl 17 . . . . 5  |-  ( ph  ->  ( TopOpen `  R )  =  ( MetOpen `  (
( dist `  R )  |`  ( ( Base `  R
)  X.  ( Base `  R ) ) ) ) )
2912fveq2d 6195 . . . . 5  |-  ( ph  ->  ( MetOpen `  ( ( dist `  R )  |`  ( V  X.  V
) ) )  =  ( MetOpen `  ( ( dist `  R )  |`  ( ( Base `  R
)  X.  ( Base `  R ) ) ) ) )
3028, 29eqtr4d 2659 . . . 4  |-  ( ph  ->  ( TopOpen `  R )  =  ( MetOpen `  (
( dist `  R )  |`  ( V  X.  V
) ) ) )
3130oveq1d 6665 . . 3  |-  ( ph  ->  ( ( TopOpen `  R
) qTop  F )  =  ( ( MetOpen `  ( ( dist `  R )  |`  ( V  X.  V
) ) ) qTop  F
) )
32 blbas 22235 . . . . . 6  |-  ( ( ( dist `  R
)  |`  ( V  X.  V ) )  e.  ( *Met `  V )  ->  ran  ( ball `  ( ( dist `  R )  |`  ( V  X.  V
) ) )  e.  TopBases )
3314, 32syl 17 . . . . 5  |-  ( ph  ->  ran  ( ball `  (
( dist `  R )  |`  ( V  X.  V
) ) )  e.  TopBases )
34 unirnbl 22225 . . . . . . 7  |-  ( ( ( dist `  R
)  |`  ( V  X.  V ) )  e.  ( *Met `  V )  ->  U. ran  ( ball `  ( ( dist `  R )  |`  ( V  X.  V
) ) )  =  V )
35 f1oeq2 6128 . . . . . . 7  |-  ( U. ran  ( ball `  (
( dist `  R )  |`  ( V  X.  V
) ) )  =  V  ->  ( F : U. ran  ( ball `  ( ( dist `  R
)  |`  ( V  X.  V ) ) ) -1-1-onto-> B  <-> 
F : V -1-1-onto-> B ) )
3614, 34, 353syl 18 . . . . . 6  |-  ( ph  ->  ( F : U. ran  ( ball `  (
( dist `  R )  |`  ( V  X.  V
) ) ) -1-1-onto-> B  <->  F : V
-1-1-onto-> B ) )
373, 36mpbird 247 . . . . 5  |-  ( ph  ->  F : U. ran  ( ball `  ( ( dist `  R )  |`  ( V  X.  V
) ) ) -1-1-onto-> B )
38 eqid 2622 . . . . . 6  |-  U. ran  ( ball `  ( ( dist `  R )  |`  ( V  X.  V
) ) )  = 
U. ran  ( ball `  ( ( dist `  R
)  |`  ( V  X.  V ) ) )
3938tgqtop 21515 . . . . 5  |-  ( ( ran  ( ball `  (
( dist `  R )  |`  ( V  X.  V
) ) )  e.  TopBases 
/\  F : U. ran  ( ball `  (
( dist `  R )  |`  ( V  X.  V
) ) ) -1-1-onto-> B )  ->  ( ( topGen ` 
ran  ( ball `  (
( dist `  R )  |`  ( V  X.  V
) ) ) ) qTop 
F )  =  (
topGen `  ( ran  ( ball `  ( ( dist `  R )  |`  ( V  X.  V ) ) ) qTop  F ) ) )
4033, 37, 39syl2anc 693 . . . 4  |-  ( ph  ->  ( ( topGen `  ran  ( ball `  ( ( dist `  R )  |`  ( V  X.  V
) ) ) ) qTop 
F )  =  (
topGen `  ( ran  ( ball `  ( ( dist `  R )  |`  ( V  X.  V ) ) ) qTop  F ) ) )
41 eqid 2622 . . . . . . 7  |-  ( MetOpen `  ( ( dist `  R
)  |`  ( V  X.  V ) ) )  =  ( MetOpen `  (
( dist `  R )  |`  ( V  X.  V
) ) )
4241mopnval 22243 . . . . . 6  |-  ( ( ( dist `  R
)  |`  ( V  X.  V ) )  e.  ( *Met `  V )  ->  ( MetOpen
`  ( ( dist `  R )  |`  ( V  X.  V ) ) )  =  ( topGen ` 
ran  ( ball `  (
( dist `  R )  |`  ( V  X.  V
) ) ) ) )
4314, 42syl 17 . . . . 5  |-  ( ph  ->  ( MetOpen `  ( ( dist `  R )  |`  ( V  X.  V
) ) )  =  ( topGen `  ran  ( ball `  ( ( dist `  R
)  |`  ( V  X.  V ) ) ) ) )
4443oveq1d 6665 . . . 4  |-  ( ph  ->  ( ( MetOpen `  (
( dist `  R )  |`  ( V  X.  V
) ) ) qTop  F
)  =  ( (
topGen `  ran  ( ball `  ( ( dist `  R
)  |`  ( V  X.  V ) ) ) ) qTop  F ) )
45 eqid 2622 . . . . . . 7  |-  ( MetOpen `  ( dist `  U )
)  =  ( MetOpen `  ( dist `  U )
)
4645mopnval 22243 . . . . . 6  |-  ( (
dist `  U )  e.  ( *Met `  B )  ->  ( MetOpen
`  ( dist `  U
) )  =  (
topGen `  ran  ( ball `  ( dist `  U
) ) ) )
4715, 46syl 17 . . . . 5  |-  ( ph  ->  ( MetOpen `  ( dist `  U ) )  =  ( topGen `  ran  ( ball `  ( dist `  U
) ) ) )
48 xmetf 22134 . . . . . . . 8  |-  ( (
dist `  U )  e.  ( *Met `  ( Base `  U )
)  ->  ( dist `  U ) : ( ( Base `  U
)  X.  ( Base `  U ) ) --> RR* )
4920, 48syl 17 . . . . . . 7  |-  ( ph  ->  ( dist `  U
) : ( (
Base `  U )  X.  ( Base `  U
) ) --> RR* )
50 ffn 6045 . . . . . . 7  |-  ( (
dist `  U ) : ( ( Base `  U )  X.  ( Base `  U ) ) -->
RR*  ->  ( dist `  U
)  Fn  ( (
Base `  U )  X.  ( Base `  U
) ) )
51 fnresdm 6000 . . . . . . 7  |-  ( (
dist `  U )  Fn  ( ( Base `  U
)  X.  ( Base `  U ) )  -> 
( ( dist `  U
)  |`  ( ( Base `  U )  X.  ( Base `  U ) ) )  =  ( dist `  U ) )
5249, 50, 513syl 18 . . . . . 6  |-  ( ph  ->  ( ( dist `  U
)  |`  ( ( Base `  U )  X.  ( Base `  U ) ) )  =  ( dist `  U ) )
5352fveq2d 6195 . . . . 5  |-  ( ph  ->  ( MetOpen `  ( ( dist `  U )  |`  ( ( Base `  U
)  X.  ( Base `  U ) ) ) )  =  ( MetOpen `  ( dist `  U )
) )
543ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  C_  B )  /\  (
y  e.  V  /\  r  e.  RR* ) )  ->  F : V -1-1-onto-> B
)
55 f1of1 6136 . . . . . . . . . . . . . . 15  |-  ( F : V -1-1-onto-> B  ->  F : V -1-1-> B )
5654, 55syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  C_  B )  /\  (
y  e.  V  /\  r  e.  RR* ) )  ->  F : V -1-1-> B )
57 cnvimass 5485 . . . . . . . . . . . . . . 15  |-  ( `' F " x ) 
C_  dom  F
58 f1odm 6141 . . . . . . . . . . . . . . . 16  |-  ( F : V -1-1-onto-> B  ->  dom  F  =  V )
5954, 58syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  C_  B )  /\  (
y  e.  V  /\  r  e.  RR* ) )  ->  dom  F  =  V )
6057, 59syl5sseq 3653 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  C_  B )  /\  (
y  e.  V  /\  r  e.  RR* ) )  ->  ( `' F " x )  C_  V
)
6114ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  C_  B )  /\  (
y  e.  V  /\  r  e.  RR* ) )  ->  ( ( dist `  R )  |`  ( V  X.  V ) )  e.  ( *Met `  V ) )
62 simprl 794 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  C_  B )  /\  (
y  e.  V  /\  r  e.  RR* ) )  ->  y  e.  V
)
63 simprr 796 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  C_  B )  /\  (
y  e.  V  /\  r  e.  RR* ) )  ->  r  e.  RR* )
64 blssm 22223 . . . . . . . . . . . . . . 15  |-  ( ( ( ( dist `  R
)  |`  ( V  X.  V ) )  e.  ( *Met `  V )  /\  y  e.  V  /\  r  e.  RR* )  ->  (
y ( ball `  (
( dist `  R )  |`  ( V  X.  V
) ) ) r )  C_  V )
6561, 62, 63, 64syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  C_  B )  /\  (
y  e.  V  /\  r  e.  RR* ) )  ->  ( y (
ball `  ( ( dist `  R )  |`  ( V  X.  V
) ) ) r )  C_  V )
66 f1imaeq 6522 . . . . . . . . . . . . . 14  |-  ( ( F : V -1-1-> B  /\  ( ( `' F " x )  C_  V  /\  ( y ( ball `  ( ( dist `  R
)  |`  ( V  X.  V ) ) ) r )  C_  V
) )  ->  (
( F " ( `' F " x ) )  =  ( F
" ( y (
ball `  ( ( dist `  R )  |`  ( V  X.  V
) ) ) r ) )  <->  ( `' F " x )  =  ( y ( ball `  ( ( dist `  R
)  |`  ( V  X.  V ) ) ) r ) ) )
6756, 60, 65, 66syl12anc 1324 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  C_  B )  /\  (
y  e.  V  /\  r  e.  RR* ) )  ->  ( ( F
" ( `' F " x ) )  =  ( F " (
y ( ball `  (
( dist `  R )  |`  ( V  X.  V
) ) ) r ) )  <->  ( `' F " x )  =  ( y ( ball `  ( ( dist `  R
)  |`  ( V  X.  V ) ) ) r ) ) )
6854, 16syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  C_  B )  /\  (
y  e.  V  /\  r  e.  RR* ) )  ->  F : V -onto-> B )
69 simplr 792 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  C_  B )  /\  (
y  e.  V  /\  r  e.  RR* ) )  ->  x  C_  B
)
70 foimacnv 6154 . . . . . . . . . . . . . . 15  |-  ( ( F : V -onto-> B  /\  x  C_  B )  ->  ( F "
( `' F "
x ) )  =  x )
7168, 69, 70syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  C_  B )  /\  (
y  e.  V  /\  r  e.  RR* ) )  ->  ( F "
( `' F "
x ) )  =  x )
721ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  C_  B )  /\  (
y  e.  V  /\  r  e.  RR* ) )  ->  U  =  ( F  "s  R ) )
732ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  C_  B )  /\  (
y  e.  V  /\  r  e.  RR* ) )  ->  V  =  (
Base `  R )
)
744ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  C_  B )  /\  (
y  e.  V  /\  r  e.  RR* ) )  ->  R  e.  *MetSp )
7572, 73, 54, 74, 5, 6, 61, 62, 63imasf1obl 22293 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  C_  B )  /\  (
y  e.  V  /\  r  e.  RR* ) )  ->  ( ( F `
 y ) (
ball `  ( dist `  U ) ) r )  =  ( F
" ( y (
ball `  ( ( dist `  R )  |`  ( V  X.  V
) ) ) r ) ) )
7675eqcomd 2628 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  C_  B )  /\  (
y  e.  V  /\  r  e.  RR* ) )  ->  ( F "
( y ( ball `  ( ( dist `  R
)  |`  ( V  X.  V ) ) ) r ) )  =  ( ( F `  y ) ( ball `  ( dist `  U
) ) r ) )
7771, 76eqeq12d 2637 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  C_  B )  /\  (
y  e.  V  /\  r  e.  RR* ) )  ->  ( ( F
" ( `' F " x ) )  =  ( F " (
y ( ball `  (
( dist `  R )  |`  ( V  X.  V
) ) ) r ) )  <->  x  =  ( ( F `  y ) ( ball `  ( dist `  U
) ) r ) ) )
7867, 77bitr3d 270 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  C_  B )  /\  (
y  e.  V  /\  r  e.  RR* ) )  ->  ( ( `' F " x )  =  ( y (
ball `  ( ( dist `  R )  |`  ( V  X.  V
) ) ) r )  <->  x  =  (
( F `  y
) ( ball `  ( dist `  U ) ) r ) ) )
79782rexbidva 3056 . . . . . . . . . . 11  |-  ( (
ph  /\  x  C_  B
)  ->  ( E. y  e.  V  E. r  e.  RR*  ( `' F " x )  =  ( y (
ball `  ( ( dist `  R )  |`  ( V  X.  V
) ) ) r )  <->  E. y  e.  V  E. r  e.  RR*  x  =  ( ( F `
 y ) (
ball `  ( dist `  U ) ) r ) ) )
803adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  C_  B
)  ->  F : V
-1-1-onto-> B )
81 f1ofn 6138 . . . . . . . . . . . 12  |-  ( F : V -1-1-onto-> B  ->  F  Fn  V )
82 oveq1 6657 . . . . . . . . . . . . . . 15  |-  ( z  =  ( F `  y )  ->  (
z ( ball `  ( dist `  U ) ) r )  =  ( ( F `  y
) ( ball `  ( dist `  U ) ) r ) )
8382eqeq2d 2632 . . . . . . . . . . . . . 14  |-  ( z  =  ( F `  y )  ->  (
x  =  ( z ( ball `  ( dist `  U ) ) r )  <->  x  =  ( ( F `  y ) ( ball `  ( dist `  U
) ) r ) ) )
8483rexbidv 3052 . . . . . . . . . . . . 13  |-  ( z  =  ( F `  y )  ->  ( E. r  e.  RR*  x  =  ( z (
ball `  ( dist `  U ) ) r )  <->  E. r  e.  RR*  x  =  ( ( F `  y )
( ball `  ( dist `  U ) ) r ) ) )
8584rexrn 6361 . . . . . . . . . . . 12  |-  ( F  Fn  V  ->  ( E. z  e.  ran  F E. r  e.  RR*  x  =  ( z
( ball `  ( dist `  U ) ) r )  <->  E. y  e.  V  E. r  e.  RR*  x  =  ( ( F `
 y ) (
ball `  ( dist `  U ) ) r ) ) )
8680, 81, 853syl 18 . . . . . . . . . . 11  |-  ( (
ph  /\  x  C_  B
)  ->  ( E. z  e.  ran  F E. r  e.  RR*  x  =  ( z ( ball `  ( dist `  U
) ) r )  <->  E. y  e.  V  E. r  e.  RR*  x  =  ( ( F `
 y ) (
ball `  ( dist `  U ) ) r ) ) )
87 forn 6118 . . . . . . . . . . . . 13  |-  ( F : V -onto-> B  ->  ran  F  =  B )
8880, 16, 873syl 18 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  C_  B
)  ->  ran  F  =  B )
8988rexeqdv 3145 . . . . . . . . . . 11  |-  ( (
ph  /\  x  C_  B
)  ->  ( E. z  e.  ran  F E. r  e.  RR*  x  =  ( z ( ball `  ( dist `  U
) ) r )  <->  E. z  e.  B  E. r  e.  RR*  x  =  ( z (
ball `  ( dist `  U ) ) r ) ) )
9079, 86, 893bitr2d 296 . . . . . . . . . 10  |-  ( (
ph  /\  x  C_  B
)  ->  ( E. y  e.  V  E. r  e.  RR*  ( `' F " x )  =  ( y (
ball `  ( ( dist `  R )  |`  ( V  X.  V
) ) ) r )  <->  E. z  e.  B  E. r  e.  RR*  x  =  ( z (
ball `  ( dist `  U ) ) r ) ) )
9114adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  x  C_  B
)  ->  ( ( dist `  R )  |`  ( V  X.  V
) )  e.  ( *Met `  V
) )
92 blrn 22214 . . . . . . . . . . 11  |-  ( ( ( dist `  R
)  |`  ( V  X.  V ) )  e.  ( *Met `  V )  ->  (
( `' F "
x )  e.  ran  ( ball `  ( ( dist `  R )  |`  ( V  X.  V
) ) )  <->  E. y  e.  V  E. r  e.  RR*  ( `' F " x )  =  ( y ( ball `  (
( dist `  R )  |`  ( V  X.  V
) ) ) r ) ) )
9391, 92syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  x  C_  B
)  ->  ( ( `' F " x )  e.  ran  ( ball `  ( ( dist `  R
)  |`  ( V  X.  V ) ) )  <->  E. y  e.  V  E. r  e.  RR*  ( `' F " x )  =  ( y (
ball `  ( ( dist `  R )  |`  ( V  X.  V
) ) ) r ) ) )
9415adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  x  C_  B
)  ->  ( dist `  U )  e.  ( *Met `  B
) )
95 blrn 22214 . . . . . . . . . . 11  |-  ( (
dist `  U )  e.  ( *Met `  B )  ->  (
x  e.  ran  ( ball `  ( dist `  U
) )  <->  E. z  e.  B  E. r  e.  RR*  x  =  ( z ( ball `  ( dist `  U ) ) r ) ) )
9694, 95syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  x  C_  B
)  ->  ( x  e.  ran  ( ball `  ( dist `  U ) )  <->  E. z  e.  B  E. r  e.  RR*  x  =  ( z (
ball `  ( dist `  U ) ) r ) ) )
9790, 93, 963bitr4d 300 . . . . . . . . 9  |-  ( (
ph  /\  x  C_  B
)  ->  ( ( `' F " x )  e.  ran  ( ball `  ( ( dist `  R
)  |`  ( V  X.  V ) ) )  <-> 
x  e.  ran  ( ball `  ( dist `  U
) ) ) )
9897pm5.32da 673 . . . . . . . 8  |-  ( ph  ->  ( ( x  C_  B  /\  ( `' F " x )  e.  ran  ( ball `  ( ( dist `  R )  |`  ( V  X.  V
) ) ) )  <-> 
( x  C_  B  /\  x  e.  ran  ( ball `  ( dist `  U ) ) ) ) )
99 f1ofo 6144 . . . . . . . . . 10  |-  ( F : U. ran  ( ball `  ( ( dist `  R )  |`  ( V  X.  V ) ) ) -1-1-onto-> B  ->  F : U. ran  ( ball `  (
( dist `  R )  |`  ( V  X.  V
) ) ) -onto-> B )
10037, 99syl 17 . . . . . . . . 9  |-  ( ph  ->  F : U. ran  ( ball `  ( ( dist `  R )  |`  ( V  X.  V
) ) ) -onto-> B )
10138elqtop2 21504 . . . . . . . . 9  |-  ( ( ran  ( ball `  (
( dist `  R )  |`  ( V  X.  V
) ) )  e.  TopBases 
/\  F : U. ran  ( ball `  (
( dist `  R )  |`  ( V  X.  V
) ) ) -onto-> B )  ->  ( x  e.  ( ran  ( ball `  ( ( dist `  R
)  |`  ( V  X.  V ) ) ) qTop 
F )  <->  ( x  C_  B  /\  ( `' F " x )  e.  ran  ( ball `  ( ( dist `  R
)  |`  ( V  X.  V ) ) ) ) ) )
10233, 100, 101syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( ran  ( ball `  (
( dist `  R )  |`  ( V  X.  V
) ) ) qTop  F
)  <->  ( x  C_  B  /\  ( `' F " x )  e.  ran  ( ball `  ( ( dist `  R )  |`  ( V  X.  V
) ) ) ) ) )
103 blf 22212 . . . . . . . . . . . 12  |-  ( (
dist `  U )  e.  ( *Met `  B )  ->  ( ball `  ( dist `  U
) ) : ( B  X.  RR* ) --> ~P B )
104 frn 6053 . . . . . . . . . . . 12  |-  ( (
ball `  ( dist `  U ) ) : ( B  X.  RR* )
--> ~P B  ->  ran  ( ball `  ( dist `  U ) )  C_  ~P B )
10515, 103, 1043syl 18 . . . . . . . . . . 11  |-  ( ph  ->  ran  ( ball `  ( dist `  U ) ) 
C_  ~P B )
106105sseld 3602 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ran  ( ball `  ( dist `  U ) )  ->  x  e.  ~P B
) )
107 elpwi 4168 . . . . . . . . . 10  |-  ( x  e.  ~P B  ->  x  C_  B )
108106, 107syl6 35 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ran  ( ball `  ( dist `  U ) )  ->  x  C_  B ) )
109108pm4.71rd 667 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ran  ( ball `  ( dist `  U ) )  <->  ( x  C_  B  /\  x  e. 
ran  ( ball `  ( dist `  U ) ) ) ) )
11098, 102, 1093bitr4d 300 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( ran  ( ball `  (
( dist `  R )  |`  ( V  X.  V
) ) ) qTop  F
)  <->  x  e.  ran  ( ball `  ( dist `  U ) ) ) )
111110eqrdv 2620 . . . . . 6  |-  ( ph  ->  ( ran  ( ball `  ( ( dist `  R
)  |`  ( V  X.  V ) ) ) qTop 
F )  =  ran  ( ball `  ( dist `  U ) ) )
112111fveq2d 6195 . . . . 5  |-  ( ph  ->  ( topGen `  ( ran  ( ball `  ( ( dist `  R )  |`  ( V  X.  V
) ) ) qTop  F
) )  =  (
topGen `  ran  ( ball `  ( dist `  U
) ) ) )
11347, 53, 1123eqtr4d 2666 . . . 4  |-  ( ph  ->  ( MetOpen `  ( ( dist `  U )  |`  ( ( Base `  U
)  X.  ( Base `  U ) ) ) )  =  ( topGen `  ( ran  ( ball `  ( ( dist `  R
)  |`  ( V  X.  V ) ) ) qTop 
F ) ) )
11440, 44, 1133eqtr4d 2666 . . 3  |-  ( ph  ->  ( ( MetOpen `  (
( dist `  R )  |`  ( V  X.  V
) ) ) qTop  F
)  =  ( MetOpen `  ( ( dist `  U
)  |`  ( ( Base `  U )  X.  ( Base `  U ) ) ) ) )
11526, 31, 1143eqtrd 2660 . 2  |-  ( ph  ->  ( TopOpen `  U )  =  ( MetOpen `  (
( dist `  U )  |`  ( ( Base `  U
)  X.  ( Base `  U ) ) ) ) )
116 eqid 2622 . . 3  |-  ( Base `  U )  =  (
Base `  U )
117 eqid 2622 . . 3  |-  ( (
dist `  U )  |`  ( ( Base `  U
)  X.  ( Base `  U ) ) )  =  ( ( dist `  U )  |`  (
( Base `  U )  X.  ( Base `  U
) ) )
11825, 116, 117isxms2 22253 . 2  |-  ( U  e.  *MetSp  <->  ( (
( dist `  U )  |`  ( ( Base `  U
)  X.  ( Base `  U ) ) )  e.  ( *Met `  ( Base `  U
) )  /\  ( TopOpen
`  U )  =  ( MetOpen `  ( ( dist `  U )  |`  ( ( Base `  U
)  X.  ( Base `  U ) ) ) ) ) )
11923, 115, 118sylanbrc 698 1  |-  ( ph  ->  U  e.  *MetSp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913    C_ wss 3574   ~Pcpw 4158   U.cuni 4436    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   RR*cxr 10073   Basecbs 15857   distcds 15950   TopOpenctopn 16082   topGenctg 16098   qTop cqtop 16163    "s cimas 16164   *Metcxmt 19731   ballcbl 19733   MetOpencmopn 19736   TopBasesctb 20749   *MetSpcxme 22122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-xrs 16162  df-qtop 16167  df-imas 16168  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-xms 22125
This theorem is referenced by:  imasf1oms  22295  xpsxms  22339
  Copyright terms: Public domain W3C validator