MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  motcgr Structured version   Visualization version   Unicode version

Theorem motcgr 25431
Description: Property of a motion: distances are preserved. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
ismot.p  |-  P  =  ( Base `  G
)
ismot.m  |-  .-  =  ( dist `  G )
motgrp.1  |-  ( ph  ->  G  e.  V )
motcgr.a  |-  ( ph  ->  A  e.  P )
motcgr.b  |-  ( ph  ->  B  e.  P )
motcgr.f  |-  ( ph  ->  F  e.  ( GIsmt G ) )
Assertion
Ref Expression
motcgr  |-  ( ph  ->  ( ( F `  A )  .-  ( F `  B )
)  =  ( A 
.-  B ) )

Proof of Theorem motcgr
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 motcgr.a . 2  |-  ( ph  ->  A  e.  P )
2 motcgr.b . 2  |-  ( ph  ->  B  e.  P )
3 motcgr.f . . . 4  |-  ( ph  ->  F  e.  ( GIsmt G ) )
4 motgrp.1 . . . . 5  |-  ( ph  ->  G  e.  V )
5 ismot.p . . . . . 6  |-  P  =  ( Base `  G
)
6 ismot.m . . . . . 6  |-  .-  =  ( dist `  G )
75, 6ismot 25430 . . . . 5  |-  ( G  e.  V  ->  ( F  e.  ( GIsmt G )  <->  ( F : P -1-1-onto-> P  /\  A. a  e.  P  A. b  e.  P  ( ( F `  a )  .-  ( F `  b
) )  =  ( a  .-  b ) ) ) )
84, 7syl 17 . . . 4  |-  ( ph  ->  ( F  e.  ( GIsmt G )  <->  ( F : P -1-1-onto-> P  /\  A. a  e.  P  A. b  e.  P  ( ( F `  a )  .-  ( F `  b
) )  =  ( a  .-  b ) ) ) )
93, 8mpbid 222 . . 3  |-  ( ph  ->  ( F : P -1-1-onto-> P  /\  A. a  e.  P  A. b  e.  P  ( ( F `  a )  .-  ( F `  b )
)  =  ( a 
.-  b ) ) )
109simprd 479 . 2  |-  ( ph  ->  A. a  e.  P  A. b  e.  P  ( ( F `  a )  .-  ( F `  b )
)  =  ( a 
.-  b ) )
11 fveq2 6191 . . . . 5  |-  ( a  =  A  ->  ( F `  a )  =  ( F `  A ) )
1211oveq1d 6665 . . . 4  |-  ( a  =  A  ->  (
( F `  a
)  .-  ( F `  b ) )  =  ( ( F `  A )  .-  ( F `  b )
) )
13 oveq1 6657 . . . 4  |-  ( a  =  A  ->  (
a  .-  b )  =  ( A  .-  b ) )
1412, 13eqeq12d 2637 . . 3  |-  ( a  =  A  ->  (
( ( F `  a )  .-  ( F `  b )
)  =  ( a 
.-  b )  <->  ( ( F `  A )  .-  ( F `  b
) )  =  ( A  .-  b ) ) )
15 fveq2 6191 . . . . 5  |-  ( b  =  B  ->  ( F `  b )  =  ( F `  B ) )
1615oveq2d 6666 . . . 4  |-  ( b  =  B  ->  (
( F `  A
)  .-  ( F `  b ) )  =  ( ( F `  A )  .-  ( F `  B )
) )
17 oveq2 6658 . . . 4  |-  ( b  =  B  ->  ( A  .-  b )  =  ( A  .-  B
) )
1816, 17eqeq12d 2637 . . 3  |-  ( b  =  B  ->  (
( ( F `  A )  .-  ( F `  b )
)  =  ( A 
.-  b )  <->  ( ( F `  A )  .-  ( F `  B
) )  =  ( A  .-  B ) ) )
1914, 18rspc2va 3323 . 2  |-  ( ( ( A  e.  P  /\  B  e.  P
)  /\  A. a  e.  P  A. b  e.  P  ( ( F `  a )  .-  ( F `  b
) )  =  ( a  .-  b ) )  ->  ( ( F `  A )  .-  ( F `  B
) )  =  ( A  .-  B ) )
201, 2, 10, 19syl21anc 1325 1  |-  ( ph  ->  ( ( F `  A )  .-  ( F `  B )
)  =  ( A 
.-  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   Basecbs 15857   distcds 15950  Ismtcismt 25427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-ismt 25428
This theorem is referenced by:  motco  25435  cnvmot  25436  motcgrg  25439  motcgr3  25440
  Copyright terms: Public domain W3C validator