MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  motcgrg Structured version   Visualization version   Unicode version

Theorem motcgrg 25439
Description: Property of a motion: distances are preserved. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
ismot.p  |-  P  =  ( Base `  G
)
ismot.m  |-  .-  =  ( dist `  G )
motgrp.1  |-  ( ph  ->  G  e.  V )
motgrp.i  |-  I  =  { <. ( Base `  ndx ) ,  ( GIsmt G ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( GIsmt G ) ,  g  e.  ( GIsmt G )  |->  ( f  o.  g ) ) >. }
motcgrg.r  |-  .~  =  (cgrG `  G )
motcgrg.t  |-  ( ph  ->  T  e. Word  P )
motcgrg.f  |-  ( ph  ->  F  e.  ( GIsmt G ) )
Assertion
Ref Expression
motcgrg  |-  ( ph  ->  ( F  o.  T
)  .~  T )
Distinct variable groups:    f, G, g    f, I, g    P, f, g    ph, f, g
Allowed substitution hints:    .~ ( f, g)    T( f, g)    F( f, g)    .- ( f, g)    V( f, g)

Proof of Theorem motcgrg
Dummy variables  a 
b  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  T : ( 0..^ n ) --> P )  ->  T : ( 0..^ n ) --> P )
21adantr 481 . . . . . . 7  |-  ( ( ( ( ph  /\  n  e.  NN0 )  /\  T : ( 0..^ n ) --> P )  /\  ( a  e.  dom  ( F  o.  T
)  /\  b  e.  dom  ( F  o.  T
) ) )  ->  T : ( 0..^ n ) --> P )
3 simprl 794 . . . . . . . 8  |-  ( ( ( ( ph  /\  n  e.  NN0 )  /\  T : ( 0..^ n ) --> P )  /\  ( a  e.  dom  ( F  o.  T
)  /\  b  e.  dom  ( F  o.  T
) ) )  -> 
a  e.  dom  ( F  o.  T )
)
4 ismot.p . . . . . . . . . . . . . 14  |-  P  =  ( Base `  G
)
5 ismot.m . . . . . . . . . . . . . 14  |-  .-  =  ( dist `  G )
6 motgrp.1 . . . . . . . . . . . . . 14  |-  ( ph  ->  G  e.  V )
7 motcgrg.f . . . . . . . . . . . . . 14  |-  ( ph  ->  F  e.  ( GIsmt G ) )
84, 5, 6, 7motf1o 25433 . . . . . . . . . . . . 13  |-  ( ph  ->  F : P -1-1-onto-> P )
9 f1of 6137 . . . . . . . . . . . . 13  |-  ( F : P -1-1-onto-> P  ->  F : P
--> P )
108, 9syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  F : P --> P )
1110ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  T : ( 0..^ n ) --> P )  ->  F : P --> P )
12 fco 6058 . . . . . . . . . . 11  |-  ( ( F : P --> P  /\  T : ( 0..^ n ) --> P )  -> 
( F  o.  T
) : ( 0..^ n ) --> P )
1311, 1, 12syl2anc 693 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  T : ( 0..^ n ) --> P )  -> 
( F  o.  T
) : ( 0..^ n ) --> P )
1413adantr 481 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  NN0 )  /\  T : ( 0..^ n ) --> P )  /\  ( a  e.  dom  ( F  o.  T
)  /\  b  e.  dom  ( F  o.  T
) ) )  -> 
( F  o.  T
) : ( 0..^ n ) --> P )
15 fdm 6051 . . . . . . . . 9  |-  ( ( F  o.  T ) : ( 0..^ n ) --> P  ->  dom  ( F  o.  T
)  =  ( 0..^ n ) )
1614, 15syl 17 . . . . . . . 8  |-  ( ( ( ( ph  /\  n  e.  NN0 )  /\  T : ( 0..^ n ) --> P )  /\  ( a  e.  dom  ( F  o.  T
)  /\  b  e.  dom  ( F  o.  T
) ) )  ->  dom  ( F  o.  T
)  =  ( 0..^ n ) )
173, 16eleqtrd 2703 . . . . . . 7  |-  ( ( ( ( ph  /\  n  e.  NN0 )  /\  T : ( 0..^ n ) --> P )  /\  ( a  e.  dom  ( F  o.  T
)  /\  b  e.  dom  ( F  o.  T
) ) )  -> 
a  e.  ( 0..^ n ) )
18 fvco3 6275 . . . . . . 7  |-  ( ( T : ( 0..^ n ) --> P  /\  a  e.  ( 0..^ n ) )  -> 
( ( F  o.  T ) `  a
)  =  ( F `
 ( T `  a ) ) )
192, 17, 18syl2anc 693 . . . . . 6  |-  ( ( ( ( ph  /\  n  e.  NN0 )  /\  T : ( 0..^ n ) --> P )  /\  ( a  e.  dom  ( F  o.  T
)  /\  b  e.  dom  ( F  o.  T
) ) )  -> 
( ( F  o.  T ) `  a
)  =  ( F `
 ( T `  a ) ) )
20 simprr 796 . . . . . . . 8  |-  ( ( ( ( ph  /\  n  e.  NN0 )  /\  T : ( 0..^ n ) --> P )  /\  ( a  e.  dom  ( F  o.  T
)  /\  b  e.  dom  ( F  o.  T
) ) )  -> 
b  e.  dom  ( F  o.  T )
)
2120, 16eleqtrd 2703 . . . . . . 7  |-  ( ( ( ( ph  /\  n  e.  NN0 )  /\  T : ( 0..^ n ) --> P )  /\  ( a  e.  dom  ( F  o.  T
)  /\  b  e.  dom  ( F  o.  T
) ) )  -> 
b  e.  ( 0..^ n ) )
22 fvco3 6275 . . . . . . 7  |-  ( ( T : ( 0..^ n ) --> P  /\  b  e.  ( 0..^ n ) )  -> 
( ( F  o.  T ) `  b
)  =  ( F `
 ( T `  b ) ) )
232, 21, 22syl2anc 693 . . . . . 6  |-  ( ( ( ( ph  /\  n  e.  NN0 )  /\  T : ( 0..^ n ) --> P )  /\  ( a  e.  dom  ( F  o.  T
)  /\  b  e.  dom  ( F  o.  T
) ) )  -> 
( ( F  o.  T ) `  b
)  =  ( F `
 ( T `  b ) ) )
2419, 23oveq12d 6668 . . . . 5  |-  ( ( ( ( ph  /\  n  e.  NN0 )  /\  T : ( 0..^ n ) --> P )  /\  ( a  e.  dom  ( F  o.  T
)  /\  b  e.  dom  ( F  o.  T
) ) )  -> 
( ( ( F  o.  T ) `  a )  .-  (
( F  o.  T
) `  b )
)  =  ( ( F `  ( T `
 a ) ) 
.-  ( F `  ( T `  b ) ) ) )
256ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  T : ( 0..^ n ) --> P )  ->  G  e.  V )
2625adantr 481 . . . . . 6  |-  ( ( ( ( ph  /\  n  e.  NN0 )  /\  T : ( 0..^ n ) --> P )  /\  ( a  e.  dom  ( F  o.  T
)  /\  b  e.  dom  ( F  o.  T
) ) )  ->  G  e.  V )
272, 17ffvelrnd 6360 . . . . . 6  |-  ( ( ( ( ph  /\  n  e.  NN0 )  /\  T : ( 0..^ n ) --> P )  /\  ( a  e.  dom  ( F  o.  T
)  /\  b  e.  dom  ( F  o.  T
) ) )  -> 
( T `  a
)  e.  P )
282, 21ffvelrnd 6360 . . . . . 6  |-  ( ( ( ( ph  /\  n  e.  NN0 )  /\  T : ( 0..^ n ) --> P )  /\  ( a  e.  dom  ( F  o.  T
)  /\  b  e.  dom  ( F  o.  T
) ) )  -> 
( T `  b
)  e.  P )
297ad3antrrr 766 . . . . . 6  |-  ( ( ( ( ph  /\  n  e.  NN0 )  /\  T : ( 0..^ n ) --> P )  /\  ( a  e.  dom  ( F  o.  T
)  /\  b  e.  dom  ( F  o.  T
) ) )  ->  F  e.  ( GIsmt G ) )
304, 5, 26, 27, 28, 29motcgr 25431 . . . . 5  |-  ( ( ( ( ph  /\  n  e.  NN0 )  /\  T : ( 0..^ n ) --> P )  /\  ( a  e.  dom  ( F  o.  T
)  /\  b  e.  dom  ( F  o.  T
) ) )  -> 
( ( F `  ( T `  a ) )  .-  ( F `
 ( T `  b ) ) )  =  ( ( T `
 a )  .-  ( T `  b ) ) )
3124, 30eqtrd 2656 . . . 4  |-  ( ( ( ( ph  /\  n  e.  NN0 )  /\  T : ( 0..^ n ) --> P )  /\  ( a  e.  dom  ( F  o.  T
)  /\  b  e.  dom  ( F  o.  T
) ) )  -> 
( ( ( F  o.  T ) `  a )  .-  (
( F  o.  T
) `  b )
)  =  ( ( T `  a ) 
.-  ( T `  b ) ) )
3231ralrimivva 2971 . . 3  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  T : ( 0..^ n ) --> P )  ->  A. a  e.  dom  ( F  o.  T
) A. b  e. 
dom  ( F  o.  T ) ( ( ( F  o.  T
) `  a )  .-  ( ( F  o.  T ) `  b
) )  =  ( ( T `  a
)  .-  ( T `  b ) ) )
33 motcgrg.r . . . 4  |-  .~  =  (cgrG `  G )
34 fzo0ssnn0 12548 . . . . . 6  |-  ( 0..^ n )  C_  NN0
35 nn0ssre 11296 . . . . . 6  |-  NN0  C_  RR
3634, 35sstri 3612 . . . . 5  |-  ( 0..^ n )  C_  RR
3736a1i 11 . . . 4  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  T : ( 0..^ n ) --> P )  -> 
( 0..^ n ) 
C_  RR )
384, 5, 33, 25, 37, 13, 1iscgrgd 25408 . . 3  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  T : ( 0..^ n ) --> P )  -> 
( ( F  o.  T )  .~  T  <->  A. a  e.  dom  ( F  o.  T ) A. b  e.  dom  ( F  o.  T
) ( ( ( F  o.  T ) `
 a )  .-  ( ( F  o.  T ) `  b
) )  =  ( ( T `  a
)  .-  ( T `  b ) ) ) )
3932, 38mpbird 247 . 2  |-  ( ( ( ph  /\  n  e.  NN0 )  /\  T : ( 0..^ n ) --> P )  -> 
( F  o.  T
)  .~  T )
40 motcgrg.t . . 3  |-  ( ph  ->  T  e. Word  P )
41 iswrd 13307 . . 3  |-  ( T  e. Word  P  <->  E. n  e.  NN0  T : ( 0..^ n ) --> P )
4240, 41sylib 208 . 2  |-  ( ph  ->  E. n  e.  NN0  T : ( 0..^ n ) --> P )
4339, 42r19.29a 3078 1  |-  ( ph  ->  ( F  o.  T
)  .~  T )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   {cpr 4179   <.cop 4183   class class class wbr 4653   dom cdm 5114    o. ccom 5118   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   RRcr 9935   0cc0 9936   NN0cn0 11292  ..^cfzo 12465  Word cword 13291   ndxcnx 15854   Basecbs 15857   +g cplusg 15941   distcds 15950  cgrGccgrg 25405  Ismtcismt 25427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-word 13299  df-cgrg 25406  df-ismt 25428
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator