Proof of Theorem liminfequzmpt2
| Step | Hyp | Ref
| Expression |
| 1 | | liminfequzmpt2.j |
. . . . . . . . 9
   |
| 2 | | liminfequzmpt2.a |
. . . . . . . . . . . . . . 15
     |
| 3 | | liminfequzmpt2.k |
. . . . . . . . . . . . . . 15
   |
| 4 | 2, 3 | uzssd2 39644 |
. . . . . . . . . . . . . 14
       |
| 5 | 4 | adantr 481 |
. . . . . . . . . . . . 13
 
    
      |
| 6 | | simpr 477 |
. . . . . . . . . . . . 13
 
    
      |
| 7 | 5, 6 | sseldd 3604 |
. . . . . . . . . . . 12
 
    
  |
| 8 | | liminfequzmpt2.c |
. . . . . . . . . . . . 13
 
    
  |
| 9 | 8 | elexd 3214 |
. . . . . . . . . . . 12
 
    
  |
| 10 | 7, 9 | jca 554 |
. . . . . . . . . . 11
 
    

   |
| 11 | | rabid 3116 |
. . . . . . . . . . 11
  

   |
| 12 | 10, 11 | sylibr 224 |
. . . . . . . . . 10
 
    

   |
| 13 | 12 | ex 450 |
. . . . . . . . 9
           |
| 14 | 1, 13 | ralrimi 2957 |
. . . . . . . 8
           |
| 15 | | nfcv 2764 |
. . . . . . . . 9
       |
| 16 | | nfrab1 3122 |
. . . . . . . . 9
  
  |
| 17 | 15, 16 | dfss3f 3595 |
. . . . . . . 8
     

          |
| 18 | 14, 17 | sylibr 224 |
. . . . . . 7
     
   |
| 19 | 16, 15 | resmptf 5451 |
. . . . . . 7
     
   
 
             |
| 20 | 18, 19 | syl 17 |
. . . . . 6
   
               |
| 21 | 20 | eqcomd 2628 |
. . . . 5
                   |
| 22 | 21 | fveq2d 6195 |
. . . 4
 liminf        liminf              |
| 23 | 2, 3 | eluzelz2d 39640 |
. . . . 5
   |
| 24 | | eqid 2622 |
. . . . 5
         |
| 25 | | liminfequzmpt2.o |
. . . . . . . 8
   |
| 26 | 2 | fvexi 6202 |
. . . . . . . 8
 |
| 27 | 25, 26 | rabexf 39319 |
. . . . . . 7
   |
| 28 | 16, 27 | mptexf 39444 |
. . . . . 6
     |
| 29 | 28 | a1i 11 |
. . . . 5
  
    |
| 30 | | eqid 2622 |
. . . . . . . 8
     
   |
| 31 | 16, 30 | dmmptssf 39438 |
. . . . . . 7
       |
| 32 | 25 | ssrab2f 39300 |
. . . . . . . 8
   |
| 33 | | uzssz 11707 |
. . . . . . . . 9
     |
| 34 | 2, 33 | eqsstri 3635 |
. . . . . . . 8
 |
| 35 | 32, 34 | sstri 3612 |
. . . . . . 7
   |
| 36 | 31, 35 | sstri 3612 |
. . . . . 6
     |
| 37 | 36 | a1i 11 |
. . . . 5
  
    |
| 38 | 23, 24, 29, 37 | liminfresuz2 40019 |
. . . 4
 liminf            liminf  
     |
| 39 | 22, 38 | eqtr2d 2657 |
. . 3
 liminf  
   liminf          |
| 40 | | liminfequzmpt2.b |
. . . . . . . . . . . . . . 15
     |
| 41 | | liminfequzmpt2.e |
. . . . . . . . . . . . . . 15
   |
| 42 | 40, 41 | uzssd2 39644 |
. . . . . . . . . . . . . 14
       |
| 43 | 42 | adantr 481 |
. . . . . . . . . . . . 13
 
    
      |
| 44 | 43, 6 | sseldd 3604 |
. . . . . . . . . . . 12
 
    
  |
| 45 | 44, 9 | jca 554 |
. . . . . . . . . . 11
 
    

   |
| 46 | | rabid 3116 |
. . . . . . . . . . 11
  

   |
| 47 | 45, 46 | sylibr 224 |
. . . . . . . . . 10
 
    

   |
| 48 | 47 | ex 450 |
. . . . . . . . 9
           |
| 49 | 1, 48 | ralrimi 2957 |
. . . . . . . 8
           |
| 50 | | nfrab1 3122 |
. . . . . . . . 9
  
  |
| 51 | 15, 50 | dfss3f 3595 |
. . . . . . . 8
     

          |
| 52 | 49, 51 | sylibr 224 |
. . . . . . 7
     
   |
| 53 | 50, 15 | resmptf 5451 |
. . . . . . 7
     
   
 
             |
| 54 | 52, 53 | syl 17 |
. . . . . 6
   
               |
| 55 | 54 | eqcomd 2628 |
. . . . 5
                   |
| 56 | 55 | fveq2d 6195 |
. . . 4
 liminf        liminf              |
| 57 | | liminfequzmpt2.p |
. . . . . . . 8
   |
| 58 | 40 | fvexi 6202 |
. . . . . . . 8
 |
| 59 | 57, 58 | rabexf 39319 |
. . . . . . 7
   |
| 60 | 50, 59 | mptexf 39444 |
. . . . . 6
     |
| 61 | 60 | a1i 11 |
. . . . 5
  
    |
| 62 | | eqid 2622 |
. . . . . . . 8
     
   |
| 63 | 50, 62 | dmmptssf 39438 |
. . . . . . 7
       |
| 64 | 57 | ssrab2f 39300 |
. . . . . . . 8
   |
| 65 | | uzssz 11707 |
. . . . . . . . 9
     |
| 66 | 40, 65 | eqsstri 3635 |
. . . . . . . 8
 |
| 67 | 64, 66 | sstri 3612 |
. . . . . . 7
   |
| 68 | 63, 67 | sstri 3612 |
. . . . . 6
     |
| 69 | 68 | a1i 11 |
. . . . 5
  
    |
| 70 | 23, 24, 61, 69 | liminfresuz2 40019 |
. . . 4
 liminf            liminf  
     |
| 71 | 56, 70 | eqtr2d 2657 |
. . 3
 liminf  
   liminf          |
| 72 | 39, 71 | eqtr4d 2659 |
. 2
 liminf  
   liminf        |
| 73 | | eqid 2622 |
. . . . 5
  
  |
| 74 | 25, 73 | mptssid 39450 |
. . . 4
   
   |
| 75 | 74 | fveq2i 6194 |
. . 3
liminf    liminf  
    |
| 76 | 75 | a1i 11 |
. 2
 liminf 
  liminf  
     |
| 77 | | eqid 2622 |
. . . . 5
  
  |
| 78 | 57, 77 | mptssid 39450 |
. . . 4
   
   |
| 79 | 78 | fveq2i 6194 |
. . 3
liminf    liminf  
    |
| 80 | 79 | a1i 11 |
. 2
 liminf 
  liminf  
     |
| 81 | 72, 76, 80 | 3eqtr4d 2666 |
1
 liminf 
  liminf      |