Proof of Theorem liminfequzmpt2
Step | Hyp | Ref
| Expression |
1 | | liminfequzmpt2.j |
. . . . . . . . 9
   |
2 | | liminfequzmpt2.a |
. . . . . . . . . . . . . . 15
     |
3 | | liminfequzmpt2.k |
. . . . . . . . . . . . . . 15
   |
4 | 2, 3 | uzssd2 39644 |
. . . . . . . . . . . . . 14
       |
5 | 4 | adantr 481 |
. . . . . . . . . . . . 13
 
    
      |
6 | | simpr 477 |
. . . . . . . . . . . . 13
 
    
      |
7 | 5, 6 | sseldd 3604 |
. . . . . . . . . . . 12
 
    
  |
8 | | liminfequzmpt2.c |
. . . . . . . . . . . . 13
 
    
  |
9 | 8 | elexd 3214 |
. . . . . . . . . . . 12
 
    
  |
10 | 7, 9 | jca 554 |
. . . . . . . . . . 11
 
    

   |
11 | | rabid 3116 |
. . . . . . . . . . 11
  

   |
12 | 10, 11 | sylibr 224 |
. . . . . . . . . 10
 
    

   |
13 | 12 | ex 450 |
. . . . . . . . 9
           |
14 | 1, 13 | ralrimi 2957 |
. . . . . . . 8
           |
15 | | nfcv 2764 |
. . . . . . . . 9
       |
16 | | nfrab1 3122 |
. . . . . . . . 9
  
  |
17 | 15, 16 | dfss3f 3595 |
. . . . . . . 8
     

          |
18 | 14, 17 | sylibr 224 |
. . . . . . 7
     
   |
19 | 16, 15 | resmptf 5451 |
. . . . . . 7
     
   
 
             |
20 | 18, 19 | syl 17 |
. . . . . 6
   
               |
21 | 20 | eqcomd 2628 |
. . . . 5
                   |
22 | 21 | fveq2d 6195 |
. . . 4
 liminf        liminf              |
23 | 2, 3 | eluzelz2d 39640 |
. . . . 5
   |
24 | | eqid 2622 |
. . . . 5
         |
25 | | liminfequzmpt2.o |
. . . . . . . 8
   |
26 | 2 | fvexi 6202 |
. . . . . . . 8
 |
27 | 25, 26 | rabexf 39319 |
. . . . . . 7
   |
28 | 16, 27 | mptexf 39444 |
. . . . . 6
     |
29 | 28 | a1i 11 |
. . . . 5
  
    |
30 | | eqid 2622 |
. . . . . . . 8
     
   |
31 | 16, 30 | dmmptssf 39438 |
. . . . . . 7
       |
32 | 25 | ssrab2f 39300 |
. . . . . . . 8
   |
33 | | uzssz 11707 |
. . . . . . . . 9
     |
34 | 2, 33 | eqsstri 3635 |
. . . . . . . 8
 |
35 | 32, 34 | sstri 3612 |
. . . . . . 7
   |
36 | 31, 35 | sstri 3612 |
. . . . . 6
     |
37 | 36 | a1i 11 |
. . . . 5
  
    |
38 | 23, 24, 29, 37 | liminfresuz2 40019 |
. . . 4
 liminf            liminf  
     |
39 | 22, 38 | eqtr2d 2657 |
. . 3
 liminf  
   liminf          |
40 | | liminfequzmpt2.b |
. . . . . . . . . . . . . . 15
     |
41 | | liminfequzmpt2.e |
. . . . . . . . . . . . . . 15
   |
42 | 40, 41 | uzssd2 39644 |
. . . . . . . . . . . . . 14
       |
43 | 42 | adantr 481 |
. . . . . . . . . . . . 13
 
    
      |
44 | 43, 6 | sseldd 3604 |
. . . . . . . . . . . 12
 
    
  |
45 | 44, 9 | jca 554 |
. . . . . . . . . . 11
 
    

   |
46 | | rabid 3116 |
. . . . . . . . . . 11
  

   |
47 | 45, 46 | sylibr 224 |
. . . . . . . . . 10
 
    

   |
48 | 47 | ex 450 |
. . . . . . . . 9
           |
49 | 1, 48 | ralrimi 2957 |
. . . . . . . 8
           |
50 | | nfrab1 3122 |
. . . . . . . . 9
  
  |
51 | 15, 50 | dfss3f 3595 |
. . . . . . . 8
     

          |
52 | 49, 51 | sylibr 224 |
. . . . . . 7
     
   |
53 | 50, 15 | resmptf 5451 |
. . . . . . 7
     
   
 
             |
54 | 52, 53 | syl 17 |
. . . . . 6
   
               |
55 | 54 | eqcomd 2628 |
. . . . 5
                   |
56 | 55 | fveq2d 6195 |
. . . 4
 liminf        liminf              |
57 | | liminfequzmpt2.p |
. . . . . . . 8
   |
58 | 40 | fvexi 6202 |
. . . . . . . 8
 |
59 | 57, 58 | rabexf 39319 |
. . . . . . 7
   |
60 | 50, 59 | mptexf 39444 |
. . . . . 6
     |
61 | 60 | a1i 11 |
. . . . 5
  
    |
62 | | eqid 2622 |
. . . . . . . 8
     
   |
63 | 50, 62 | dmmptssf 39438 |
. . . . . . 7
       |
64 | 57 | ssrab2f 39300 |
. . . . . . . 8
   |
65 | | uzssz 11707 |
. . . . . . . . 9
     |
66 | 40, 65 | eqsstri 3635 |
. . . . . . . 8
 |
67 | 64, 66 | sstri 3612 |
. . . . . . 7
   |
68 | 63, 67 | sstri 3612 |
. . . . . 6
     |
69 | 68 | a1i 11 |
. . . . 5
  
    |
70 | 23, 24, 61, 69 | liminfresuz2 40019 |
. . . 4
 liminf            liminf  
     |
71 | 56, 70 | eqtr2d 2657 |
. . 3
 liminf  
   liminf          |
72 | 39, 71 | eqtr4d 2659 |
. 2
 liminf  
   liminf        |
73 | | eqid 2622 |
. . . . 5
  
  |
74 | 25, 73 | mptssid 39450 |
. . . 4
   
   |
75 | 74 | fveq2i 6194 |
. . 3
liminf    liminf  
    |
76 | 75 | a1i 11 |
. 2
 liminf 
  liminf  
     |
77 | | eqid 2622 |
. . . . 5
  
  |
78 | 57, 77 | mptssid 39450 |
. . . 4
   
   |
79 | 78 | fveq2i 6194 |
. . 3
liminf    liminf  
    |
80 | 79 | a1i 11 |
. 2
 liminf 
  liminf  
     |
81 | 72, 76, 80 | 3eqtr4d 2666 |
1
 liminf 
  liminf      |