| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupequzmpt2 | Structured version Visualization version Unicode version | ||
| Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| limsupequzmpt2.j |
|
| limsupequzmpt2.o |
|
| limsupequzmpt2.p |
|
| limsupequzmpt2.a |
|
| limsupequzmpt2.b |
|
| limsupequzmpt2.k |
|
| limsupequzmpt2.e |
|
| limsupequzmpt2.c |
|
| Ref | Expression |
|---|---|
| limsupequzmpt2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsupequzmpt2.j |
. . . . . . . . 9
| |
| 2 | limsupequzmpt2.a |
. . . . . . . . . . . . . . 15
| |
| 3 | limsupequzmpt2.k |
. . . . . . . . . . . . . . 15
| |
| 4 | 2, 3 | uzssd2 39644 |
. . . . . . . . . . . . . 14
|
| 5 | 4 | adantr 481 |
. . . . . . . . . . . . 13
|
| 6 | simpr 477 |
. . . . . . . . . . . . 13
| |
| 7 | 5, 6 | sseldd 3604 |
. . . . . . . . . . . 12
|
| 8 | limsupequzmpt2.c |
. . . . . . . . . . . . 13
| |
| 9 | 8 | elexd 3214 |
. . . . . . . . . . . 12
|
| 10 | 7, 9 | jca 554 |
. . . . . . . . . . 11
|
| 11 | rabid 3116 |
. . . . . . . . . . 11
| |
| 12 | 10, 11 | sylibr 224 |
. . . . . . . . . 10
|
| 13 | 12 | ex 450 |
. . . . . . . . 9
|
| 14 | 1, 13 | ralrimi 2957 |
. . . . . . . 8
|
| 15 | nfcv 2764 |
. . . . . . . . 9
| |
| 16 | nfrab1 3122 |
. . . . . . . . 9
| |
| 17 | 15, 16 | dfss3f 3595 |
. . . . . . . 8
|
| 18 | 14, 17 | sylibr 224 |
. . . . . . 7
|
| 19 | 16, 15 | resmptf 5451 |
. . . . . . 7
|
| 20 | 18, 19 | syl 17 |
. . . . . 6
|
| 21 | 20 | eqcomd 2628 |
. . . . 5
|
| 22 | 21 | fveq2d 6195 |
. . . 4
|
| 23 | 2, 3 | eluzelz2d 39640 |
. . . . 5
|
| 24 | eqid 2622 |
. . . . 5
| |
| 25 | limsupequzmpt2.o |
. . . . . . . 8
| |
| 26 | 2 | fvexi 6202 |
. . . . . . . 8
|
| 27 | 25, 26 | rabexf 39319 |
. . . . . . 7
|
| 28 | 16, 27 | mptexf 39444 |
. . . . . 6
|
| 29 | 28 | a1i 11 |
. . . . 5
|
| 30 | eqid 2622 |
. . . . . . . 8
| |
| 31 | 16, 30 | dmmptssf 39438 |
. . . . . . 7
|
| 32 | 25 | ssrab2f 39300 |
. . . . . . . 8
|
| 33 | uzssz 11707 |
. . . . . . . . 9
| |
| 34 | 2, 33 | eqsstri 3635 |
. . . . . . . 8
|
| 35 | 32, 34 | sstri 3612 |
. . . . . . 7
|
| 36 | 31, 35 | sstri 3612 |
. . . . . 6
|
| 37 | 36 | a1i 11 |
. . . . 5
|
| 38 | 23, 24, 29, 37 | limsupresuz2 39941 |
. . . 4
|
| 39 | 22, 38 | eqtr2d 2657 |
. . 3
|
| 40 | limsupequzmpt2.b |
. . . . . . . . . . . . . . 15
| |
| 41 | limsupequzmpt2.e |
. . . . . . . . . . . . . . 15
| |
| 42 | 40, 41 | uzssd2 39644 |
. . . . . . . . . . . . . 14
|
| 43 | 42 | adantr 481 |
. . . . . . . . . . . . 13
|
| 44 | 43, 6 | sseldd 3604 |
. . . . . . . . . . . 12
|
| 45 | 44, 9 | jca 554 |
. . . . . . . . . . 11
|
| 46 | rabid 3116 |
. . . . . . . . . . 11
| |
| 47 | 45, 46 | sylibr 224 |
. . . . . . . . . 10
|
| 48 | 47 | ex 450 |
. . . . . . . . 9
|
| 49 | 1, 48 | ralrimi 2957 |
. . . . . . . 8
|
| 50 | nfrab1 3122 |
. . . . . . . . 9
| |
| 51 | 15, 50 | dfss3f 3595 |
. . . . . . . 8
|
| 52 | 49, 51 | sylibr 224 |
. . . . . . 7
|
| 53 | 50, 15 | resmptf 5451 |
. . . . . . 7
|
| 54 | 52, 53 | syl 17 |
. . . . . 6
|
| 55 | 54 | eqcomd 2628 |
. . . . 5
|
| 56 | 55 | fveq2d 6195 |
. . . 4
|
| 57 | limsupequzmpt2.p |
. . . . . . . 8
| |
| 58 | 40 | fvexi 6202 |
. . . . . . . 8
|
| 59 | 57, 58 | rabexf 39319 |
. . . . . . 7
|
| 60 | 50, 59 | mptexf 39444 |
. . . . . 6
|
| 61 | 60 | a1i 11 |
. . . . 5
|
| 62 | eqid 2622 |
. . . . . . . 8
| |
| 63 | 50, 62 | dmmptssf 39438 |
. . . . . . 7
|
| 64 | 57 | ssrab2f 39300 |
. . . . . . . 8
|
| 65 | uzssz 11707 |
. . . . . . . . 9
| |
| 66 | 40, 65 | eqsstri 3635 |
. . . . . . . 8
|
| 67 | 64, 66 | sstri 3612 |
. . . . . . 7
|
| 68 | 63, 67 | sstri 3612 |
. . . . . 6
|
| 69 | 68 | a1i 11 |
. . . . 5
|
| 70 | 23, 24, 61, 69 | limsupresuz2 39941 |
. . . 4
|
| 71 | 56, 70 | eqtr2d 2657 |
. . 3
|
| 72 | 39, 71 | eqtr4d 2659 |
. 2
|
| 73 | eqid 2622 |
. . . . 5
| |
| 74 | 25, 73 | mptssid 39450 |
. . . 4
|
| 75 | 74 | fveq2i 6194 |
. . 3
|
| 76 | 75 | a1i 11 |
. 2
|
| 77 | eqid 2622 |
. . . . 5
| |
| 78 | 57, 77 | mptssid 39450 |
. . . 4
|
| 79 | 78 | fveq2i 6194 |
. . 3
|
| 80 | 79 | a1i 11 |
. 2
|
| 81 | 72, 76, 80 | 3eqtr4d 2666 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-ico 12181 df-limsup 14202 |
| This theorem is referenced by: smflimsupmpt 41035 |
| Copyright terms: Public domain | W3C validator |