MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcfval Structured version   Visualization version   Unicode version

Theorem mrcfval 16268
Description: Value of the function expression for the Moore closure. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrcfval.f  |-  F  =  (mrCls `  C )
Assertion
Ref Expression
mrcfval  |-  ( C  e.  (Moore `  X
)  ->  F  =  ( x  e.  ~P X  |->  |^| { s  e.  C  |  x  C_  s } ) )
Distinct variable groups:    x, F, s    x, C, s    x, X, s

Proof of Theorem mrcfval
Dummy variable  c is distinct from all other variables.
StepHypRef Expression
1 mrcfval.f . 2  |-  F  =  (mrCls `  C )
2 fvssunirn 6217 . . . . 5  |-  (Moore `  X )  C_  U. ran Moore
32sseli 3599 . . . 4  |-  ( C  e.  (Moore `  X
)  ->  C  e.  U.
ran Moore )
4 unieq 4444 . . . . . . 7  |-  ( c  =  C  ->  U. c  =  U. C )
54pweqd 4163 . . . . . 6  |-  ( c  =  C  ->  ~P U. c  =  ~P U. C )
6 rabeq 3192 . . . . . . 7  |-  ( c  =  C  ->  { s  e.  c  |  x 
C_  s }  =  { s  e.  C  |  x  C_  s } )
76inteqd 4480 . . . . . 6  |-  ( c  =  C  ->  |^| { s  e.  c  |  x 
C_  s }  =  |^| { s  e.  C  |  x  C_  s } )
85, 7mpteq12dv 4733 . . . . 5  |-  ( c  =  C  ->  (
x  e.  ~P U. c  |->  |^| { s  e.  c  |  x  C_  s } )  =  ( x  e.  ~P U. C  |->  |^| { s  e.  C  |  x  C_  s } ) )
9 df-mrc 16247 . . . . 5  |- mrCls  =  ( c  e.  U. ran Moore  |->  ( x  e.  ~P U. c  |->  |^| { s  e.  c  |  x  C_  s } ) )
10 mreunirn 16261 . . . . . . . 8  |-  ( c  e.  U. ran Moore  <->  c  e.  (Moore `  U. c ) )
11 mrcflem 16266 . . . . . . . 8  |-  ( c  e.  (Moore `  U. c )  ->  (
x  e.  ~P U. c  |->  |^| { s  e.  c  |  x  C_  s } ) : ~P U. c --> c )
1210, 11sylbi 207 . . . . . . 7  |-  ( c  e.  U. ran Moore  ->  (
x  e.  ~P U. c  |->  |^| { s  e.  c  |  x  C_  s } ) : ~P U. c --> c )
13 fssxp 6060 . . . . . . 7  |-  ( ( x  e.  ~P U. c  |->  |^| { s  e.  c  |  x  C_  s } ) : ~P U. c --> c  ->  (
x  e.  ~P U. c  |->  |^| { s  e.  c  |  x  C_  s } )  C_  ( ~P U. c  X.  c
) )
1412, 13syl 17 . . . . . 6  |-  ( c  e.  U. ran Moore  ->  (
x  e.  ~P U. c  |->  |^| { s  e.  c  |  x  C_  s } )  C_  ( ~P U. c  X.  c
) )
15 vuniex 6954 . . . . . . . 8  |-  U. c  e.  _V
1615pwex 4848 . . . . . . 7  |-  ~P U. c  e.  _V
17 vex 3203 . . . . . . 7  |-  c  e. 
_V
1816, 17xpex 6962 . . . . . 6  |-  ( ~P
U. c  X.  c
)  e.  _V
19 ssexg 4804 . . . . . 6  |-  ( ( ( x  e.  ~P U. c  |->  |^| { s  e.  c  |  x  C_  s } )  C_  ( ~P U. c  X.  c
)  /\  ( ~P U. c  X.  c )  e.  _V )  -> 
( x  e.  ~P U. c  |->  |^| { s  e.  c  |  x  C_  s } )  e.  _V )
2014, 18, 19sylancl 694 . . . . 5  |-  ( c  e.  U. ran Moore  ->  (
x  e.  ~P U. c  |->  |^| { s  e.  c  |  x  C_  s } )  e.  _V )
218, 9, 20fvmpt3 6286 . . . 4  |-  ( C  e.  U. ran Moore  ->  (mrCls `  C )  =  ( x  e.  ~P U. C  |->  |^| { s  e.  C  |  x  C_  s } ) )
223, 21syl 17 . . 3  |-  ( C  e.  (Moore `  X
)  ->  (mrCls `  C
)  =  ( x  e.  ~P U. C  |-> 
|^| { s  e.  C  |  x  C_  s } ) )
23 mreuni 16260 . . . . 5  |-  ( C  e.  (Moore `  X
)  ->  U. C  =  X )
2423pweqd 4163 . . . 4  |-  ( C  e.  (Moore `  X
)  ->  ~P U. C  =  ~P X )
2524mpteq1d 4738 . . 3  |-  ( C  e.  (Moore `  X
)  ->  ( x  e.  ~P U. C  |->  |^|
{ s  e.  C  |  x  C_  s } )  =  ( x  e.  ~P X  |->  |^|
{ s  e.  C  |  x  C_  s } ) )
2622, 25eqtrd 2656 . 2  |-  ( C  e.  (Moore `  X
)  ->  (mrCls `  C
)  =  ( x  e.  ~P X  |->  |^|
{ s  e.  C  |  x  C_  s } ) )
271, 26syl5eq 2668 1  |-  ( C  e.  (Moore `  X
)  ->  F  =  ( x  e.  ~P X  |->  |^| { s  e.  C  |  x  C_  s } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   |^|cint 4475    |-> cmpt 4729    X. cxp 5112   ran crn 5115   -->wf 5884   ` cfv 5888  Moorecmre 16242  mrClscmrc 16243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-mre 16246  df-mrc 16247
This theorem is referenced by:  mrcf  16269  mrcval  16270  acsficl2d  17176  mrclsp  18989  mrccls  20883
  Copyright terms: Public domain W3C validator