MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrieqvlemd Structured version   Visualization version   Unicode version

Theorem mrieqvlemd 16289
Description: In a Moore system, if  Y is a member of  S,  ( S  \  { Y } ) and  S have the same closure if and only if  Y is in the closure of  ( S  \  { Y } ). Used in the proof of mrieqvd 16298 and mrieqv2d 16299. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mrieqvlemd.1  |-  ( ph  ->  A  e.  (Moore `  X ) )
mrieqvlemd.2  |-  N  =  (mrCls `  A )
mrieqvlemd.3  |-  ( ph  ->  S  C_  X )
mrieqvlemd.4  |-  ( ph  ->  Y  e.  S )
Assertion
Ref Expression
mrieqvlemd  |-  ( ph  ->  ( Y  e.  ( N `  ( S 
\  { Y }
) )  <->  ( N `  ( S  \  { Y } ) )  =  ( N `  S
) ) )

Proof of Theorem mrieqvlemd
StepHypRef Expression
1 mrieqvlemd.1 . . . . 5  |-  ( ph  ->  A  e.  (Moore `  X ) )
21adantr 481 . . . 4  |-  ( (
ph  /\  Y  e.  ( N `  ( S 
\  { Y }
) ) )  ->  A  e.  (Moore `  X
) )
3 mrieqvlemd.2 . . . 4  |-  N  =  (mrCls `  A )
4 undif1 4043 . . . . . 6  |-  ( ( S  \  { Y } )  u.  { Y } )  =  ( S  u.  { Y } )
5 mrieqvlemd.3 . . . . . . . . . 10  |-  ( ph  ->  S  C_  X )
65adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  Y  e.  ( N `  ( S 
\  { Y }
) ) )  ->  S  C_  X )
76ssdifssd 3748 . . . . . . . 8  |-  ( (
ph  /\  Y  e.  ( N `  ( S 
\  { Y }
) ) )  -> 
( S  \  { Y } )  C_  X
)
82, 3, 7mrcssidd 16285 . . . . . . 7  |-  ( (
ph  /\  Y  e.  ( N `  ( S 
\  { Y }
) ) )  -> 
( S  \  { Y } )  C_  ( N `  ( S  \  { Y } ) ) )
9 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  Y  e.  ( N `  ( S 
\  { Y }
) ) )  ->  Y  e.  ( N `  ( S  \  { Y } ) ) )
109snssd 4340 . . . . . . 7  |-  ( (
ph  /\  Y  e.  ( N `  ( S 
\  { Y }
) ) )  ->  { Y }  C_  ( N `  ( S  \  { Y } ) ) )
118, 10unssd 3789 . . . . . 6  |-  ( (
ph  /\  Y  e.  ( N `  ( S 
\  { Y }
) ) )  -> 
( ( S  \  { Y } )  u. 
{ Y } ) 
C_  ( N `  ( S  \  { Y } ) ) )
124, 11syl5eqssr 3650 . . . . 5  |-  ( (
ph  /\  Y  e.  ( N `  ( S 
\  { Y }
) ) )  -> 
( S  u.  { Y } )  C_  ( N `  ( S  \  { Y } ) ) )
1312unssad 3790 . . . 4  |-  ( (
ph  /\  Y  e.  ( N `  ( S 
\  { Y }
) ) )  ->  S  C_  ( N `  ( S  \  { Y } ) ) )
14 difssd 3738 . . . 4  |-  ( (
ph  /\  Y  e.  ( N `  ( S 
\  { Y }
) ) )  -> 
( S  \  { Y } )  C_  S
)
152, 3, 13, 14mressmrcd 16287 . . 3  |-  ( (
ph  /\  Y  e.  ( N `  ( S 
\  { Y }
) ) )  -> 
( N `  S
)  =  ( N `
 ( S  \  { Y } ) ) )
1615eqcomd 2628 . 2  |-  ( (
ph  /\  Y  e.  ( N `  ( S 
\  { Y }
) ) )  -> 
( N `  ( S  \  { Y }
) )  =  ( N `  S ) )
171, 3, 5mrcssidd 16285 . . . . 5  |-  ( ph  ->  S  C_  ( N `  S ) )
18 mrieqvlemd.4 . . . . 5  |-  ( ph  ->  Y  e.  S )
1917, 18sseldd 3604 . . . 4  |-  ( ph  ->  Y  e.  ( N `
 S ) )
2019adantr 481 . . 3  |-  ( (
ph  /\  ( N `  ( S  \  { Y } ) )  =  ( N `  S
) )  ->  Y  e.  ( N `  S
) )
21 simpr 477 . . 3  |-  ( (
ph  /\  ( N `  ( S  \  { Y } ) )  =  ( N `  S
) )  ->  ( N `  ( S  \  { Y } ) )  =  ( N `
 S ) )
2220, 21eleqtrrd 2704 . 2  |-  ( (
ph  /\  ( N `  ( S  \  { Y } ) )  =  ( N `  S
) )  ->  Y  e.  ( N `  ( S  \  { Y }
) ) )
2316, 22impbida 877 1  |-  ( ph  ->  ( Y  e.  ( N `  ( S 
\  { Y }
) )  <->  ( N `  ( S  \  { Y } ) )  =  ( N `  S
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    \ cdif 3571    u. cun 3572    C_ wss 3574   {csn 4177   ` cfv 5888  Moorecmre 16242  mrClscmrc 16243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-mre 16246  df-mrc 16247
This theorem is referenced by:  mrieqvd  16298  mrieqv2d  16299
  Copyright terms: Public domain W3C validator