Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msrid Structured version   Visualization version   Unicode version

Theorem msrid 31442
Description: The reduct of a statement is itself. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mstaval.r  |-  R  =  (mStRed `  T )
mstaval.s  |-  S  =  (mStat `  T )
Assertion
Ref Expression
msrid  |-  ( X  e.  S  ->  ( R `  X )  =  X )

Proof of Theorem msrid
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . 5  |-  (mPreSt `  T )  =  (mPreSt `  T )
2 mstaval.r . . . . 5  |-  R  =  (mStRed `  T )
31, 2msrf 31439 . . . 4  |-  R :
(mPreSt `  T ) --> (mPreSt `  T )
4 ffn 6045 . . . 4  |-  ( R : (mPreSt `  T
) --> (mPreSt `  T )  ->  R  Fn  (mPreSt `  T ) )
5 fvelrnb 6243 . . . 4  |-  ( R  Fn  (mPreSt `  T
)  ->  ( X  e.  ran  R  <->  E. s  e.  (mPreSt `  T )
( R `  s
)  =  X ) )
63, 4, 5mp2b 10 . . 3  |-  ( X  e.  ran  R  <->  E. s  e.  (mPreSt `  T )
( R `  s
)  =  X )
71mpst123 31437 . . . . . . . . . . 11  |-  ( s  e.  (mPreSt `  T
)  ->  s  =  <. ( 1st `  ( 1st `  s ) ) ,  ( 2nd `  ( 1st `  s ) ) ,  ( 2nd `  s
) >. )
87fveq2d 6195 . . . . . . . . . 10  |-  ( s  e.  (mPreSt `  T
)  ->  ( R `  s )  =  ( R `  <. ( 1st `  ( 1st `  s
) ) ,  ( 2nd `  ( 1st `  s ) ) ,  ( 2nd `  s
) >. ) )
9 id 22 . . . . . . . . . . . 12  |-  ( s  e.  (mPreSt `  T
)  ->  s  e.  (mPreSt `  T ) )
107, 9eqeltrrd 2702 . . . . . . . . . . 11  |-  ( s  e.  (mPreSt `  T
)  ->  <. ( 1st `  ( 1st `  s
) ) ,  ( 2nd `  ( 1st `  s ) ) ,  ( 2nd `  s
) >.  e.  (mPreSt `  T ) )
11 eqid 2622 . . . . . . . . . . . 12  |-  (mVars `  T )  =  (mVars `  T )
12 eqid 2622 . . . . . . . . . . . 12  |-  U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) )  =  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) )
1311, 1, 2, 12msrval 31435 . . . . . . . . . . 11  |-  ( <.
( 1st `  ( 1st `  s ) ) ,  ( 2nd `  ( 1st `  s ) ) ,  ( 2nd `  s
) >.  e.  (mPreSt `  T )  ->  ( R `  <. ( 1st `  ( 1st `  s
) ) ,  ( 2nd `  ( 1st `  s ) ) ,  ( 2nd `  s
) >. )  =  <. ( ( 1st `  ( 1st `  s ) )  i^i  ( U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) ) ) ,  ( 2nd `  ( 1st `  s ) ) ,  ( 2nd `  s
) >. )
1410, 13syl 17 . . . . . . . . . 10  |-  ( s  e.  (mPreSt `  T
)  ->  ( R `  <. ( 1st `  ( 1st `  s ) ) ,  ( 2nd `  ( 1st `  s ) ) ,  ( 2nd `  s
) >. )  =  <. ( ( 1st `  ( 1st `  s ) )  i^i  ( U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) ) ) ,  ( 2nd `  ( 1st `  s ) ) ,  ( 2nd `  s
) >. )
158, 14eqtrd 2656 . . . . . . . . 9  |-  ( s  e.  (mPreSt `  T
)  ->  ( R `  s )  =  <. ( ( 1st `  ( 1st `  s ) )  i^i  ( U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) ) ) ,  ( 2nd `  ( 1st `  s ) ) ,  ( 2nd `  s
) >. )
163ffvelrni 6358 . . . . . . . . 9  |-  ( s  e.  (mPreSt `  T
)  ->  ( R `  s )  e.  (mPreSt `  T ) )
1715, 16eqeltrrd 2702 . . . . . . . 8  |-  ( s  e.  (mPreSt `  T
)  ->  <. ( ( 1st `  ( 1st `  s ) )  i^i  ( U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) )  X.  U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) ) ) ) ,  ( 2nd `  ( 1st `  s ) ) ,  ( 2nd `  s
) >.  e.  (mPreSt `  T ) )
1811, 1, 2, 12msrval 31435 . . . . . . . 8  |-  ( <.
( ( 1st `  ( 1st `  s ) )  i^i  ( U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) ) ) ,  ( 2nd `  ( 1st `  s ) ) ,  ( 2nd `  s
) >.  e.  (mPreSt `  T )  ->  ( R `  <. ( ( 1st `  ( 1st `  s ) )  i^i  ( U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) )  X.  U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) ) ) ) ,  ( 2nd `  ( 1st `  s ) ) ,  ( 2nd `  s
) >. )  =  <. ( ( ( 1st `  ( 1st `  s ) )  i^i  ( U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) ) )  i^i  ( U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) )  X.  U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) ) ) ) ,  ( 2nd `  ( 1st `  s ) ) ,  ( 2nd `  s
) >. )
1917, 18syl 17 . . . . . . 7  |-  ( s  e.  (mPreSt `  T
)  ->  ( R `  <. ( ( 1st `  ( 1st `  s
) )  i^i  ( U. ( (mVars `  T
) " ( ( 2nd `  ( 1st `  s ) )  u. 
{ ( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) ) ) ,  ( 2nd `  ( 1st `  s ) ) ,  ( 2nd `  s
) >. )  =  <. ( ( ( 1st `  ( 1st `  s ) )  i^i  ( U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) ) )  i^i  ( U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) )  X.  U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) ) ) ) ,  ( 2nd `  ( 1st `  s ) ) ,  ( 2nd `  s
) >. )
20 inass 3823 . . . . . . . . . 10  |-  ( ( ( 1st `  ( 1st `  s ) )  i^i  ( U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) ) )  i^i  ( U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) )  X.  U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) ) ) )  =  ( ( 1st `  ( 1st `  s ) )  i^i  ( ( U. ( (mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) )  i^i  ( U. ( (mVars `  T
) " ( ( 2nd `  ( 1st `  s ) )  u. 
{ ( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) ) ) )
21 inidm 3822 . . . . . . . . . . 11  |-  ( ( U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) )  X.  U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) ) )  i^i  ( U. ( (mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) ) )  =  ( U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) )  X.  U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) ) )
2221ineq2i 3811 . . . . . . . . . 10  |-  ( ( 1st `  ( 1st `  s ) )  i^i  ( ( U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) )  i^i  ( U. ( (mVars `  T
) " ( ( 2nd `  ( 1st `  s ) )  u. 
{ ( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) ) ) )  =  ( ( 1st `  ( 1st `  s
) )  i^i  ( U. ( (mVars `  T
) " ( ( 2nd `  ( 1st `  s ) )  u. 
{ ( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) ) )
2320, 22eqtri 2644 . . . . . . . . 9  |-  ( ( ( 1st `  ( 1st `  s ) )  i^i  ( U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) ) )  i^i  ( U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) )  X.  U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) ) ) )  =  ( ( 1st `  ( 1st `  s ) )  i^i  ( U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) ) )
2423a1i 11 . . . . . . . 8  |-  ( s  e.  (mPreSt `  T
)  ->  ( (
( 1st `  ( 1st `  s ) )  i^i  ( U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) ) )  i^i  ( U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) )  X.  U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) ) ) )  =  ( ( 1st `  ( 1st `  s ) )  i^i  ( U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) ) ) )
2524oteq1d 4414 . . . . . . 7  |-  ( s  e.  (mPreSt `  T
)  ->  <. ( ( ( 1st `  ( 1st `  s ) )  i^i  ( U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) ) )  i^i  ( U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) )  X.  U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) ) ) ) ,  ( 2nd `  ( 1st `  s ) ) ,  ( 2nd `  s
) >.  =  <. (
( 1st `  ( 1st `  s ) )  i^i  ( U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) ) ) ,  ( 2nd `  ( 1st `  s ) ) ,  ( 2nd `  s
) >. )
2619, 25eqtrd 2656 . . . . . 6  |-  ( s  e.  (mPreSt `  T
)  ->  ( R `  <. ( ( 1st `  ( 1st `  s
) )  i^i  ( U. ( (mVars `  T
) " ( ( 2nd `  ( 1st `  s ) )  u. 
{ ( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) ) ) ,  ( 2nd `  ( 1st `  s ) ) ,  ( 2nd `  s
) >. )  =  <. ( ( 1st `  ( 1st `  s ) )  i^i  ( U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) ) ) ,  ( 2nd `  ( 1st `  s ) ) ,  ( 2nd `  s
) >. )
2715fveq2d 6195 . . . . . 6  |-  ( s  e.  (mPreSt `  T
)  ->  ( R `  ( R `  s
) )  =  ( R `  <. (
( 1st `  ( 1st `  s ) )  i^i  ( U. (
(mVars `  T ) " ( ( 2nd `  ( 1st `  s
) )  u.  {
( 2nd `  s
) } ) )  X.  U. ( (mVars `  T ) " (
( 2nd `  ( 1st `  s ) )  u.  { ( 2nd `  s ) } ) ) ) ) ,  ( 2nd `  ( 1st `  s ) ) ,  ( 2nd `  s
) >. ) )
2826, 27, 153eqtr4d 2666 . . . . 5  |-  ( s  e.  (mPreSt `  T
)  ->  ( R `  ( R `  s
) )  =  ( R `  s ) )
29 fveq2 6191 . . . . . 6  |-  ( ( R `  s )  =  X  ->  ( R `  ( R `  s ) )  =  ( R `  X
) )
30 id 22 . . . . . 6  |-  ( ( R `  s )  =  X  ->  ( R `  s )  =  X )
3129, 30eqeq12d 2637 . . . . 5  |-  ( ( R `  s )  =  X  ->  (
( R `  ( R `  s )
)  =  ( R `
 s )  <->  ( R `  X )  =  X ) )
3228, 31syl5ibcom 235 . . . 4  |-  ( s  e.  (mPreSt `  T
)  ->  ( ( R `  s )  =  X  ->  ( R `
 X )  =  X ) )
3332rexlimiv 3027 . . 3  |-  ( E. s  e.  (mPreSt `  T ) ( R `
 s )  =  X  ->  ( R `  X )  =  X )
346, 33sylbi 207 . 2  |-  ( X  e.  ran  R  -> 
( R `  X
)  =  X )
35 mstaval.s . . 3  |-  S  =  (mStat `  T )
362, 35mstaval 31441 . 2  |-  S  =  ran  R
3734, 36eleq2s 2719 1  |-  ( X  e.  S  ->  ( R `  X )  =  X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   E.wrex 2913    u. cun 3572    i^i cin 3573   {csn 4177   <.cotp 4185   U.cuni 4436    X. cxp 5112   ran crn 5115   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888   1stc1st 7166   2ndc2nd 7167  mVarscmvrs 31366  mPreStcmpst 31370  mStRedcmsr 31371  mStatcmsta 31372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-ot 4186  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1st 7168  df-2nd 7169  df-mpst 31390  df-msr 31391  df-msta 31392
This theorem is referenced by:  elmsta  31445
  Copyright terms: Public domain W3C validator