MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcnre Structured version   Visualization version   Unicode version

Theorem axcnre 9985
Description: A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom 17 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-cnre 10009. (Contributed by NM, 13-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axcnre  |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
Distinct variable group:    x, y, A

Proof of Theorem axcnre
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-c 9942 . 2  |-  CC  =  ( R.  X.  R. )
2 eqeq1 2626 . . 3  |-  ( <.
z ,  w >.  =  A  ->  ( <. z ,  w >.  =  ( x  +  ( _i  x.  y ) )  <-> 
A  =  ( x  +  ( _i  x.  y ) ) ) )
322rexbidv 3057 . 2  |-  ( <.
z ,  w >.  =  A  ->  ( E. x  e.  RR  E. y  e.  RR  <. z ,  w >.  =  ( x  +  ( _i  x.  y
) )  <->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) ) )
4 opelreal 9951 . . . . . 6  |-  ( <.
z ,  0R >.  e.  RR  <->  z  e.  R. )
5 opelreal 9951 . . . . . 6  |-  ( <.
w ,  0R >.  e.  RR  <->  w  e.  R. )
64, 5anbi12i 733 . . . . 5  |-  ( (
<. z ,  0R >.  e.  RR  /\  <. w ,  0R >.  e.  RR ) 
<->  ( z  e.  R.  /\  w  e.  R. )
)
76biimpri 218 . . . 4  |-  ( ( z  e.  R.  /\  w  e.  R. )  ->  ( <. z ,  0R >.  e.  RR  /\  <. w ,  0R >.  e.  RR ) )
8 df-i 9945 . . . . . . . . 9  |-  _i  =  <. 0R ,  1R >.
98oveq1i 6660 . . . . . . . 8  |-  ( _i  x.  <. w ,  0R >. )  =  ( <. 0R ,  1R >.  x.  <. w ,  0R >. )
10 0r 9901 . . . . . . . . . 10  |-  0R  e.  R.
11 1sr 9902 . . . . . . . . . . 11  |-  1R  e.  R.
12 mulcnsr 9957 . . . . . . . . . . 11  |-  ( ( ( 0R  e.  R.  /\ 
1R  e.  R. )  /\  ( w  e.  R.  /\  0R  e.  R. )
)  ->  ( <. 0R ,  1R >.  x.  <. w ,  0R >. )  =  <. ( ( 0R 
.R  w )  +R  ( -1R  .R  ( 1R  .R  0R ) ) ) ,  ( ( 1R  .R  w )  +R  ( 0R  .R  0R ) ) >. )
1310, 11, 12mpanl12 718 . . . . . . . . . 10  |-  ( ( w  e.  R.  /\  0R  e.  R. )  -> 
( <. 0R ,  1R >.  x.  <. w ,  0R >. )  =  <. (
( 0R  .R  w
)  +R  ( -1R 
.R  ( 1R  .R  0R ) ) ) ,  ( ( 1R  .R  w )  +R  ( 0R  .R  0R ) )
>. )
1410, 13mpan2 707 . . . . . . . . 9  |-  ( w  e.  R.  ->  ( <. 0R ,  1R >.  x. 
<. w ,  0R >. )  =  <. ( ( 0R 
.R  w )  +R  ( -1R  .R  ( 1R  .R  0R ) ) ) ,  ( ( 1R  .R  w )  +R  ( 0R  .R  0R ) ) >. )
15 mulcomsr 9910 . . . . . . . . . . . . 13  |-  ( 0R 
.R  w )  =  ( w  .R  0R )
16 00sr 9920 . . . . . . . . . . . . 13  |-  ( w  e.  R.  ->  (
w  .R  0R )  =  0R )
1715, 16syl5eq 2668 . . . . . . . . . . . 12  |-  ( w  e.  R.  ->  ( 0R  .R  w )  =  0R )
1817oveq1d 6665 . . . . . . . . . . 11  |-  ( w  e.  R.  ->  (
( 0R  .R  w
)  +R  ( -1R 
.R  ( 1R  .R  0R ) ) )  =  ( 0R  +R  ( -1R  .R  ( 1R  .R  0R ) ) ) )
19 00sr 9920 . . . . . . . . . . . . . . . 16  |-  ( 1R  e.  R.  ->  ( 1R  .R  0R )  =  0R )
2011, 19ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( 1R 
.R  0R )  =  0R
2120oveq2i 6661 . . . . . . . . . . . . . 14  |-  ( -1R 
.R  ( 1R  .R  0R ) )  =  ( -1R  .R  0R )
22 m1r 9903 . . . . . . . . . . . . . . 15  |-  -1R  e.  R.
23 00sr 9920 . . . . . . . . . . . . . . 15  |-  ( -1R 
e.  R.  ->  ( -1R 
.R  0R )  =  0R )
2422, 23ax-mp 5 . . . . . . . . . . . . . 14  |-  ( -1R 
.R  0R )  =  0R
2521, 24eqtri 2644 . . . . . . . . . . . . 13  |-  ( -1R 
.R  ( 1R  .R  0R ) )  =  0R
2625oveq2i 6661 . . . . . . . . . . . 12  |-  ( 0R 
+R  ( -1R  .R  ( 1R  .R  0R ) ) )  =  ( 0R  +R  0R )
27 0idsr 9918 . . . . . . . . . . . . 13  |-  ( 0R  e.  R.  ->  ( 0R  +R  0R )  =  0R )
2810, 27ax-mp 5 . . . . . . . . . . . 12  |-  ( 0R 
+R  0R )  =  0R
2926, 28eqtri 2644 . . . . . . . . . . 11  |-  ( 0R 
+R  ( -1R  .R  ( 1R  .R  0R ) ) )  =  0R
3018, 29syl6eq 2672 . . . . . . . . . 10  |-  ( w  e.  R.  ->  (
( 0R  .R  w
)  +R  ( -1R 
.R  ( 1R  .R  0R ) ) )  =  0R )
31 mulcomsr 9910 . . . . . . . . . . . . 13  |-  ( 1R 
.R  w )  =  ( w  .R  1R )
32 1idsr 9919 . . . . . . . . . . . . 13  |-  ( w  e.  R.  ->  (
w  .R  1R )  =  w )
3331, 32syl5eq 2668 . . . . . . . . . . . 12  |-  ( w  e.  R.  ->  ( 1R  .R  w )  =  w )
3433oveq1d 6665 . . . . . . . . . . 11  |-  ( w  e.  R.  ->  (
( 1R  .R  w
)  +R  ( 0R 
.R  0R ) )  =  ( w  +R  ( 0R  .R  0R ) ) )
35 00sr 9920 . . . . . . . . . . . . . 14  |-  ( 0R  e.  R.  ->  ( 0R  .R  0R )  =  0R )
3610, 35ax-mp 5 . . . . . . . . . . . . 13  |-  ( 0R 
.R  0R )  =  0R
3736oveq2i 6661 . . . . . . . . . . . 12  |-  ( w  +R  ( 0R  .R  0R ) )  =  ( w  +R  0R )
38 0idsr 9918 . . . . . . . . . . . 12  |-  ( w  e.  R.  ->  (
w  +R  0R )  =  w )
3937, 38syl5eq 2668 . . . . . . . . . . 11  |-  ( w  e.  R.  ->  (
w  +R  ( 0R 
.R  0R ) )  =  w )
4034, 39eqtrd 2656 . . . . . . . . . 10  |-  ( w  e.  R.  ->  (
( 1R  .R  w
)  +R  ( 0R 
.R  0R ) )  =  w )
4130, 40opeq12d 4410 . . . . . . . . 9  |-  ( w  e.  R.  ->  <. (
( 0R  .R  w
)  +R  ( -1R 
.R  ( 1R  .R  0R ) ) ) ,  ( ( 1R  .R  w )  +R  ( 0R  .R  0R ) )
>.  =  <. 0R ,  w >. )
4214, 41eqtrd 2656 . . . . . . . 8  |-  ( w  e.  R.  ->  ( <. 0R ,  1R >.  x. 
<. w ,  0R >. )  =  <. 0R ,  w >. )
439, 42syl5eq 2668 . . . . . . 7  |-  ( w  e.  R.  ->  (
_i  x.  <. w ,  0R >. )  =  <. 0R ,  w >. )
4443oveq2d 6666 . . . . . 6  |-  ( w  e.  R.  ->  ( <. z ,  0R >.  +  ( _i  x.  <. w ,  0R >. )
)  =  ( <.
z ,  0R >.  + 
<. 0R ,  w >. ) )
4544adantl 482 . . . . 5  |-  ( ( z  e.  R.  /\  w  e.  R. )  ->  ( <. z ,  0R >.  +  ( _i  x.  <. w ,  0R >. ) )  =  ( <.
z ,  0R >.  + 
<. 0R ,  w >. ) )
46 addcnsr 9956 . . . . . . 7  |-  ( ( ( z  e.  R.  /\  0R  e.  R. )  /\  ( 0R  e.  R.  /\  w  e.  R. )
)  ->  ( <. z ,  0R >.  +  <. 0R ,  w >. )  =  <. ( z  +R  0R ) ,  ( 0R  +R  w )
>. )
4710, 46mpanl2 717 . . . . . 6  |-  ( ( z  e.  R.  /\  ( 0R  e.  R.  /\  w  e.  R. )
)  ->  ( <. z ,  0R >.  +  <. 0R ,  w >. )  =  <. ( z  +R  0R ) ,  ( 0R  +R  w )
>. )
4810, 47mpanr1 719 . . . . 5  |-  ( ( z  e.  R.  /\  w  e.  R. )  ->  ( <. z ,  0R >.  +  <. 0R ,  w >. )  =  <. (
z  +R  0R ) ,  ( 0R  +R  w ) >. )
49 0idsr 9918 . . . . . 6  |-  ( z  e.  R.  ->  (
z  +R  0R )  =  z )
50 addcomsr 9908 . . . . . . 7  |-  ( 0R 
+R  w )  =  ( w  +R  0R )
5150, 38syl5eq 2668 . . . . . 6  |-  ( w  e.  R.  ->  ( 0R  +R  w )  =  w )
52 opeq12 4404 . . . . . 6  |-  ( ( ( z  +R  0R )  =  z  /\  ( 0R  +R  w
)  =  w )  ->  <. ( z  +R  0R ) ,  ( 0R  +R  w )
>.  =  <. z ,  w >. )
5349, 51, 52syl2an 494 . . . . 5  |-  ( ( z  e.  R.  /\  w  e.  R. )  -> 
<. ( z  +R  0R ) ,  ( 0R  +R  w ) >.  =  <. z ,  w >. )
5445, 48, 533eqtrrd 2661 . . . 4  |-  ( ( z  e.  R.  /\  w  e.  R. )  -> 
<. z ,  w >.  =  ( <. z ,  0R >.  +  ( _i  x.  <. w ,  0R >. ) ) )
55 opex 4932 . . . . 5  |-  <. z ,  0R >.  e.  _V
56 opex 4932 . . . . 5  |-  <. w ,  0R >.  e.  _V
57 eleq1 2689 . . . . . . 7  |-  ( x  =  <. z ,  0R >.  ->  ( x  e.  RR  <->  <. z ,  0R >.  e.  RR ) )
58 eleq1 2689 . . . . . . 7  |-  ( y  =  <. w ,  0R >.  ->  ( y  e.  RR  <->  <. w ,  0R >.  e.  RR ) )
5957, 58bi2anan9 917 . . . . . 6  |-  ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  ->  ( (
x  e.  RR  /\  y  e.  RR )  <->  (
<. z ,  0R >.  e.  RR  /\  <. w ,  0R >.  e.  RR ) ) )
60 oveq1 6657 . . . . . . . 8  |-  ( x  =  <. z ,  0R >.  ->  ( x  +  ( _i  x.  y
) )  =  (
<. z ,  0R >.  +  ( _i  x.  y
) ) )
61 oveq2 6658 . . . . . . . . 9  |-  ( y  =  <. w ,  0R >.  ->  ( _i  x.  y )  =  ( _i  x.  <. w ,  0R >. ) )
6261oveq2d 6666 . . . . . . . 8  |-  ( y  =  <. w ,  0R >.  ->  ( <. z ,  0R >.  +  (
_i  x.  y )
)  =  ( <.
z ,  0R >.  +  ( _i  x.  <. w ,  0R >. )
) )
6360, 62sylan9eq 2676 . . . . . . 7  |-  ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  ->  ( x  +  ( _i  x.  y ) )  =  ( <. z ,  0R >.  +  ( _i  x.  <. w ,  0R >. ) ) )
6463eqeq2d 2632 . . . . . 6  |-  ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  ->  ( <. z ,  w >.  =  ( x  +  ( _i  x.  y ) )  <->  <. z ,  w >.  =  ( <. z ,  0R >.  +  ( _i  x.  <. w ,  0R >. ) ) ) )
6559, 64anbi12d 747 . . . . 5  |-  ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  ->  ( (
( x  e.  RR  /\  y  e.  RR )  /\  <. z ,  w >.  =  ( x  +  ( _i  x.  y
) ) )  <->  ( ( <. z ,  0R >.  e.  RR  /\  <. w ,  0R >.  e.  RR )  /\  <. z ,  w >.  =  ( <. z ,  0R >.  +  (
_i  x.  <. w ,  0R >. ) ) ) ) )
6655, 56, 65spc2ev 3301 . . . 4  |-  ( ( ( <. z ,  0R >.  e.  RR  /\  <. w ,  0R >.  e.  RR )  /\  <. z ,  w >.  =  ( <. z ,  0R >.  +  (
_i  x.  <. w ,  0R >. ) ) )  ->  E. x E. y
( ( x  e.  RR  /\  y  e.  RR )  /\  <. z ,  w >.  =  ( x  +  ( _i  x.  y ) ) ) )
677, 54, 66syl2anc 693 . . 3  |-  ( ( z  e.  R.  /\  w  e.  R. )  ->  E. x E. y
( ( x  e.  RR  /\  y  e.  RR )  /\  <. z ,  w >.  =  ( x  +  ( _i  x.  y ) ) ) )
68 r2ex 3061 . . 3  |-  ( E. x  e.  RR  E. y  e.  RR  <. z ,  w >.  =  (
x  +  ( _i  x.  y ) )  <->  E. x E. y ( ( x  e.  RR  /\  y  e.  RR )  /\  <. z ,  w >.  =  ( x  +  ( _i  x.  y
) ) ) )
6967, 68sylibr 224 . 2  |-  ( ( z  e.  R.  /\  w  e.  R. )  ->  E. x  e.  RR  E. y  e.  RR  <. z ,  w >.  =  ( x  +  ( _i  x.  y ) ) )
701, 3, 69optocl 5195 1  |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913   <.cop 4183  (class class class)co 6650   R.cnr 9687   0Rc0r 9688   1Rc1r 9689   -1Rcm1r 9690    +R cplr 9691    .R cmr 9692   CCcc 9934   RRcr 9935   _ici 9938    + caddc 9939    x. cmul 9941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-ni 9694  df-pli 9695  df-mi 9696  df-lti 9697  df-plpq 9730  df-mpq 9731  df-ltpq 9732  df-enq 9733  df-nq 9734  df-erq 9735  df-plq 9736  df-mq 9737  df-1nq 9738  df-rq 9739  df-ltnq 9740  df-np 9803  df-1p 9804  df-plp 9805  df-mp 9806  df-ltp 9807  df-enr 9877  df-nr 9878  df-plr 9879  df-mr 9880  df-0r 9882  df-1r 9883  df-m1r 9884  df-c 9942  df-i 9945  df-r 9946  df-add 9947  df-mul 9948
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator