MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mavmul0g Structured version   Visualization version   Unicode version

Theorem mavmul0g 20359
Description: The result of the 0-dimensional multiplication of a matrix with a vector is always the empty set. (Contributed by AV, 1-Mar-2019.)
Hypothesis
Ref Expression
mavmul0.t  |-  .x.  =  ( R maVecMul  <. N ,  N >. )
Assertion
Ref Expression
mavmul0g  |-  ( ( N  =  (/)  /\  R  e.  V )  ->  ( X  .x.  Y )  =  (/) )

Proof of Theorem mavmul0g
Dummy variables  i 
j  k  l are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 6659 . . 3  |-  ( ( X  =  (/)  /\  Y  =  (/) )  ->  ( X  .x.  Y )  =  ( (/)  .x.  (/) ) )
2 mavmul0.t . . . 4  |-  .x.  =  ( R maVecMul  <. N ,  N >. )
32mavmul0 20358 . . 3  |-  ( ( N  =  (/)  /\  R  e.  V )  ->  ( (/) 
.x.  (/) )  =  (/) )
41, 3sylan9eq 2676 . 2  |-  ( ( ( X  =  (/)  /\  Y  =  (/) )  /\  ( N  =  (/)  /\  R  e.  V ) )  -> 
( X  .x.  Y
)  =  (/) )
5 eqid 2622 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
6 eqid 2622 . . . . . 6  |-  ( .r
`  R )  =  ( .r `  R
)
7 simpr 477 . . . . . 6  |-  ( ( N  =  (/)  /\  R  e.  V )  ->  R  e.  V )
8 0fin 8188 . . . . . . . 8  |-  (/)  e.  Fin
9 eleq1 2689 . . . . . . . 8  |-  ( N  =  (/)  ->  ( N  e.  Fin  <->  (/)  e.  Fin ) )
108, 9mpbiri 248 . . . . . . 7  |-  ( N  =  (/)  ->  N  e. 
Fin )
1110adantr 481 . . . . . 6  |-  ( ( N  =  (/)  /\  R  e.  V )  ->  N  e.  Fin )
122, 5, 6, 7, 11, 11mvmulfval 20348 . . . . 5  |-  ( ( N  =  (/)  /\  R  e.  V )  ->  .x.  =  ( i  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) ,  j  e.  ( (
Base `  R )  ^m  N )  |->  ( k  e.  N  |->  ( R 
gsumg  ( l  e.  N  |->  ( ( k i l ) ( .r
`  R ) ( j `  l ) ) ) ) ) ) )
1312dmeqd 5326 . . . 4  |-  ( ( N  =  (/)  /\  R  e.  V )  ->  dom  .x.  =  dom  ( i  e.  ( ( Base `  R )  ^m  ( N  X.  N ) ) ,  j  e.  ( ( Base `  R
)  ^m  N )  |->  ( k  e.  N  |->  ( R  gsumg  ( l  e.  N  |->  ( ( k i l ) ( .r
`  R ) ( j `  l ) ) ) ) ) ) )
14 0ex 4790 . . . . . . . . . 10  |-  (/)  e.  _V
15 eleq1 2689 . . . . . . . . . 10  |-  ( N  =  (/)  ->  ( N  e.  _V  <->  (/)  e.  _V ) )
1614, 15mpbiri 248 . . . . . . . . 9  |-  ( N  =  (/)  ->  N  e. 
_V )
17 mptexg 6484 . . . . . . . . 9  |-  ( N  e.  _V  ->  (
k  e.  N  |->  ( R  gsumg  ( l  e.  N  |->  ( ( k i l ) ( .r
`  R ) ( j `  l ) ) ) ) )  e.  _V )
1816, 17syl 17 . . . . . . . 8  |-  ( N  =  (/)  ->  ( k  e.  N  |->  ( R 
gsumg  ( l  e.  N  |->  ( ( k i l ) ( .r
`  R ) ( j `  l ) ) ) ) )  e.  _V )
1918adantr 481 . . . . . . 7  |-  ( ( N  =  (/)  /\  R  e.  V )  ->  (
k  e.  N  |->  ( R  gsumg  ( l  e.  N  |->  ( ( k i l ) ( .r
`  R ) ( j `  l ) ) ) ) )  e.  _V )
2019adantr 481 . . . . . 6  |-  ( ( ( N  =  (/)  /\  R  e.  V )  /\  ( i  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) )  /\  j  e.  ( ( Base `  R )  ^m  N ) ) )  ->  ( k  e.  N  |->  ( R  gsumg  ( l  e.  N  |->  ( ( k i l ) ( .r `  R
) ( j `  l ) ) ) ) )  e.  _V )
2120ralrimivva 2971 . . . . 5  |-  ( ( N  =  (/)  /\  R  e.  V )  ->  A. i  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) A. j  e.  ( ( Base `  R )  ^m  N ) ( k  e.  N  |->  ( R 
gsumg  ( l  e.  N  |->  ( ( k i l ) ( .r
`  R ) ( j `  l ) ) ) ) )  e.  _V )
22 eqid 2622 . . . . . 6  |-  ( i  e.  ( ( Base `  R )  ^m  ( N  X.  N ) ) ,  j  e.  ( ( Base `  R
)  ^m  N )  |->  ( k  e.  N  |->  ( R  gsumg  ( l  e.  N  |->  ( ( k i l ) ( .r
`  R ) ( j `  l ) ) ) ) ) )  =  ( i  e.  ( ( Base `  R )  ^m  ( N  X.  N ) ) ,  j  e.  ( ( Base `  R
)  ^m  N )  |->  ( k  e.  N  |->  ( R  gsumg  ( l  e.  N  |->  ( ( k i l ) ( .r
`  R ) ( j `  l ) ) ) ) ) )
2322dmmpt2ga 7242 . . . . 5  |-  ( A. i  e.  ( ( Base `  R )  ^m  ( N  X.  N
) ) A. j  e.  ( ( Base `  R
)  ^m  N )
( k  e.  N  |->  ( R  gsumg  ( l  e.  N  |->  ( ( k i l ) ( .r
`  R ) ( j `  l ) ) ) ) )  e.  _V  ->  dom  ( i  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) ,  j  e.  ( (
Base `  R )  ^m  N )  |->  ( k  e.  N  |->  ( R 
gsumg  ( l  e.  N  |->  ( ( k i l ) ( .r
`  R ) ( j `  l ) ) ) ) ) )  =  ( ( ( Base `  R
)  ^m  ( N  X.  N ) )  X.  ( ( Base `  R
)  ^m  N )
) )
2421, 23syl 17 . . . 4  |-  ( ( N  =  (/)  /\  R  e.  V )  ->  dom  ( i  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) ,  j  e.  ( (
Base `  R )  ^m  N )  |->  ( k  e.  N  |->  ( R 
gsumg  ( l  e.  N  |->  ( ( k i l ) ( .r
`  R ) ( j `  l ) ) ) ) ) )  =  ( ( ( Base `  R
)  ^m  ( N  X.  N ) )  X.  ( ( Base `  R
)  ^m  N )
) )
25 id 22 . . . . . . . . . . 11  |-  ( N  =  (/)  ->  N  =  (/) )
2625, 25xpeq12d 5140 . . . . . . . . . 10  |-  ( N  =  (/)  ->  ( N  X.  N )  =  ( (/)  X.  (/) ) )
27 0xp 5199 . . . . . . . . . 10  |-  ( (/)  X.  (/) )  =  (/)
2826, 27syl6eq 2672 . . . . . . . . 9  |-  ( N  =  (/)  ->  ( N  X.  N )  =  (/) )
2928oveq2d 6666 . . . . . . . 8  |-  ( N  =  (/)  ->  ( (
Base `  R )  ^m  ( N  X.  N
) )  =  ( ( Base `  R
)  ^m  (/) ) )
30 fvex 6201 . . . . . . . . 9  |-  ( Base `  R )  e.  _V
31 map0e 7895 . . . . . . . . 9  |-  ( (
Base `  R )  e.  _V  ->  ( ( Base `  R )  ^m  (/) )  =  1o )
3230, 31mp1i 13 . . . . . . . 8  |-  ( N  =  (/)  ->  ( (
Base `  R )  ^m  (/) )  =  1o )
3329, 32eqtrd 2656 . . . . . . 7  |-  ( N  =  (/)  ->  ( (
Base `  R )  ^m  ( N  X.  N
) )  =  1o )
3433adantr 481 . . . . . 6  |-  ( ( N  =  (/)  /\  R  e.  V )  ->  (
( Base `  R )  ^m  ( N  X.  N
) )  =  1o )
35 df1o2 7572 . . . . . 6  |-  1o  =  { (/) }
3634, 35syl6eq 2672 . . . . 5  |-  ( ( N  =  (/)  /\  R  e.  V )  ->  (
( Base `  R )  ^m  ( N  X.  N
) )  =  { (/)
} )
37 oveq2 6658 . . . . . 6  |-  ( N  =  (/)  ->  ( (
Base `  R )  ^m  N )  =  ( ( Base `  R
)  ^m  (/) ) )
3830, 31mp1i 13 . . . . . . 7  |-  ( R  e.  V  ->  (
( Base `  R )  ^m  (/) )  =  1o )
3938, 35syl6eq 2672 . . . . . 6  |-  ( R  e.  V  ->  (
( Base `  R )  ^m  (/) )  =  { (/)
} )
4037, 39sylan9eq 2676 . . . . 5  |-  ( ( N  =  (/)  /\  R  e.  V )  ->  (
( Base `  R )  ^m  N )  =  { (/)
} )
4136, 40xpeq12d 5140 . . . 4  |-  ( ( N  =  (/)  /\  R  e.  V )  ->  (
( ( Base `  R
)  ^m  ( N  X.  N ) )  X.  ( ( Base `  R
)  ^m  N )
)  =  ( {
(/) }  X.  { (/) } ) )
4213, 24, 413eqtrd 2660 . . 3  |-  ( ( N  =  (/)  /\  R  e.  V )  ->  dom  .x.  =  ( { (/) }  X.  { (/) } ) )
43 elsni 4194 . . . . 5  |-  ( X  e.  { (/) }  ->  X  =  (/) )
44 elsni 4194 . . . . 5  |-  ( Y  e.  { (/) }  ->  Y  =  (/) )
4543, 44anim12i 590 . . . 4  |-  ( ( X  e.  { (/) }  /\  Y  e.  { (/)
} )  ->  ( X  =  (/)  /\  Y  =  (/) ) )
4645con3i 150 . . 3  |-  ( -.  ( X  =  (/)  /\  Y  =  (/) )  ->  -.  ( X  e.  { (/)
}  /\  Y  e.  {
(/) } ) )
47 ndmovg 6817 . . 3  |-  ( ( dom  .x.  =  ( { (/) }  X.  { (/)
} )  /\  -.  ( X  e.  { (/) }  /\  Y  e.  { (/)
} ) )  -> 
( X  .x.  Y
)  =  (/) )
4842, 46, 47syl2anr 495 . 2  |-  ( ( -.  ( X  =  (/)  /\  Y  =  (/) )  /\  ( N  =  (/)  /\  R  e.  V
) )  ->  ( X  .x.  Y )  =  (/) )
494, 48pm2.61ian 831 1  |-  ( ( N  =  (/)  /\  R  e.  V )  ->  ( X  .x.  Y )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   (/)c0 3915   {csn 4177   <.cop 4183    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1oc1o 7553    ^m cmap 7857   Fincfn 7955   Basecbs 15857   .rcmulr 15942    gsumg cgsu 16101   maVecMul cmvmul 20346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-prds 16108  df-pws 16110  df-sra 19172  df-rgmod 19173  df-dsmm 20076  df-frlm 20091  df-mat 20214  df-mvmul 20347
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator